Effect of dapagliflozin on proteomics and metabolomics of serum from patients with type 2 diabetes

Author:

Liu Jia,Chang Xiaona,Ding Xiaoyu,He Xueqing,Wang Jiaxuan,Wang Guang

Abstract

Abstract Background Sodium-glucose co-transporter 2 (SGLT2) inhibitors reduced the risk of cardiovascular and renal outcomes in patients with type 2 diabetes (T2D), but the underlying mechanism has not been well elucidated. The circulating levels of proteins and metabolites reflect the overall state of the human body. This study aimed to evaluate the effect of dapagliflozin on the proteome and metabolome in patients with newly diagnosed T2D. Methods A total of 57 newly diagnosed T2D patients were enrolled, and received 12 weeks of dapagliflozin treatment (10 mg/d, AstraZeneca). Serum proteome and metabolome were investigated at the baseline and after dapagliflozin treatment. Results Dapagliflozin significantly decreased HbA1c, BMI, and HOMA-IR in T2D patients (all p < 0.01). Multivariate models indicated clear separations of proteomics and metabolomics data between the baseline and after dapagliflozin treatment. A total of 38 differentially abundant proteins including 23 increased and 15 decreased proteins, and 35 differentially abundant metabolites including 17 increased and 18 decreased metabolites, were identified. In addition to influencing glucose metabolism (glycolysis/gluconeogenesis and pentose phosphate pathway), dapagliflozin significantly increased sex hormone-binding globulin, transferrin receptor protein 1, disintegrin, and metalloprotease-like decysin-1 and apolipoprotein A-IV levels, and decreased complement C3, fibronectin, afamin, attractin, xanthine, and uric acid levels. Conclusions The circulating proteome and metabolome in newly diagnosed T2D patients were significantly changed after dapagliflozin treatment. These changes in proteins and metabolites might be associated with the beneficial effect of dapagliflozin on cardiovascular and renal outcomes.

Funder

Chinese National Natural Science Foundation

Beijing Natural Science Foundation

Peaking Talent Program Foundation

Publisher

Springer Science and Business Media LLC

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3