Alterations of the expression levels of glucose, inflammation, and iron metabolism related miRNAs and their target genes in the hypothalamus of STZ-induced rat diabetes model

Author:

Pandur Edina,Szabó István,Hormay Edina,Pap Ramóna,Almási Attila,Sipos Katalin,Farkas Viktória,Karádi Zoltán

Abstract

Abstract Background The hypothalamus of the central nervous system is implicated in the development of diabetes due to its glucose-sensing function. Dysregulation of the hypothalamic glucose-sensing neurons leads to abnormal glucose metabolism. It has been described that fractalkine (FKN) is involved in the development of hypothalamic inflammation, which may be one of the underlying causes of a diabetic condition. Moreover, iron may play a role in the pathogenesis of diabetes via the regulation of hepcidin, the iron regulatory hormone synthesis. MicroRNAs (miRNAs) are short non-coding molecules working as key regulators of gene expression, usually by inhibiting translation. Hypothalamic miRNAs are supposed to have a role in the control of energy balance by acting as regulators of hypothalamic glucose metabolism via influencing translation. Methods Using a miRNA array, we analysed the expression of diabetes, inflammation, and iron metabolism related miRNAs in the hypothalamus of a streptozotocin-induced rat type 1 diabetes model. Determination of the effect of miRNAs altered by STZ treatment on the target genes was carried out at protein level. Results We found 18 miRNAs with altered expression levels in the hypothalamus of the STZ-treated animals, which act as the regulators of mRNAs involved in glucose metabolism, pro-inflammatory cytokine synthesis, and iron homeostasis suggesting a link between these processes in diabetes. The alterations in the expression level of these miRNAs could modify hypothalamic glucose sensing, tolerance, uptake, and phosphorylation by affecting the stability of hexokinase-2, insulin receptor, leptin receptor, glucokinase, GLUT4, insulin-like growth factor receptor 1, and phosphoenolpyruvate carboxykinase mRNA molecules. Additional miRNAs were found to be altered resulting in the elevation of FKN protein. The miRNA, mRNA, and protein analyses of the diabetic hypothalamus revealed that the iron import, export, and iron storage were all influenced by miRNAs suggesting the disturbance of hypothalamic iron homeostasis. Conclusion It can be supposed that glucose metabolism, inflammation, and iron homeostasis of the hypothalamus are linked via the altered expression of common miRNAs as well as the increased expression of FKN, which contribute to the imbalance of energy homeostasis, the synthesis of pro-inflammatory cytokines, and the iron accumulation of the hypothalamus. The results raise the possibility that FKN could be a potential target of new therapies targeting both inflammation and iron disturbances in diabetic conditions. Graphical Abstract

Funder

Thematic Excellence Programme

University of Pécs

Publisher

Springer Science and Business Media LLC

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3