Author:
Shiota Asuka,Shimabukuro Michio,Fukuda Daiju,Soeki Takeshi,Sato Hiromi,Uematsu Etsuko,Hirata Yoichiro,Kurobe Hirotsugu,Maeda Norikazu,Sakaue Hiroshi,Masuzaki Hiroaki,Shimomura Iichiro,Sata Masataka
Abstract
Abstract
Background
Telmisartan is a well-established angiotensin II type 1 receptor blocker that improves insulin sensitivity in animal models of obesity and insulin resistance, as well as in humans. Telmisartan has been reported to function as a partial agonist of the peroxisome proliferator-activated receptor (PPAR) γ, which is also targeted by the nicotinamide adenine dinucleotide (NAD)-dependent deacetylase (SIRT1). Here, we investigated the pathways through which telmisartan acts on skeletal muscle, in vitro as well as in vivo.
Methods
Nine-week-old male db/db mice were fed a 60% high-fat diet, with orally administrated either vehicle (carboxymethyl-cellulose, CMC), 5 mg/kg telmisartan, or 5 mg/kg telmisartan and 1 mg/kg GW9662, a selective irreversible antagonist of PPARγ, for 5 weeks. Effects of telmisartan on Sirt1 mRNA, AMPK phosphorylation, and NAD+/NADH ratio were determined in C2C12 cultured myocytes.
Results and discussion
Telmisartan treatment improved insulin sensitivity in obese db/db mice fed a high-fat diet and led to reduction in the size of hypertrophic pancreatic islets in these mice. Moreover, in vitro treatment with telmisartan led to increased expression of Sirt1 mRNA in C2C12 skeletal muscle cells; the increase in Sirt1 mRNA in telmisartan-treated C2C12 myoblasts occurred concomitantly with an increase in AMPK phosphorylation, an increase in NAD+/NADH ratio, and increases in the mRNA levels of PGC1α, FATP1, ACO, and GLUT4.
Conclusions
Our results indicate that telmisartan acts through a PPARγ-independent pathway, but at least partially exerts its effects by acting directly on skeletal muscle AMPK/SIRT1 pathways.
Publisher
Springer Science and Business Media LLC
Subject
Cardiology and Cardiovascular Medicine,Endocrinology, Diabetes and Metabolism
Reference41 articles.
1. Houtkooper RH, Pirinen E, Auwerx J: Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol. 2012, 13: 225-238.
2. Fulco M, Schiltz RL, Iezzi S: Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell. 2003, 12: 51-62. 10.1016/S1097-2765(03)00226-0.
3. Vinciguerra M, Fulco M, Ladurner A, Sartorelli V, Rosenthal N: SirT1 in muscle physiology and disease: lessons from mouse models. Dis Model Mech. 2010, 3: 298-303. 10.1242/dmm.004655.
4. Tonkin J, Villarroya F, Puri PL, Vinciguerra M: SIRT1 signaling as potential modulator of skeletal muscle diseases. Curr Opin Pharmacol. 2012, Epub ahead of print
5. Zhang BB, Zhou G, Li C: AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab. 2009, 9: 407-416. 10.1016/j.cmet.2009.03.012.
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献