Characteristics of glucose and lipid metabolism and the interaction between gut microbiota and colonic mucosal immunity in pigs during cold exposure

Author:

Teng Teng,Sun Guodong,Ding Hongwei,Song Xin,Bai Guangdong,Shi BaomingORCID,Shang Tingting

Abstract

AbstractBackgroundCold regions have long autumn and winter seasons and low ambient temperatures. When pigs are unable to adjust to the cold, oxidative damage and inflammation may develop. However, the differences between cold and non-cold adaptation regarding glucose and lipid metabolism, gut microbiota and colonic mucosal immunological features in pigs are unknown. This study revealed the glucose and lipid metabolic responses and the dual role of gut microbiota in pigs during cold and non-cold adaptation. Moreover, the regulatory effects of dietary glucose supplements on glucose and lipid metabolism and the colonic mucosal barrier were evaluated in cold-exposed pigs.ResultsCold and non-cold-adapted models were established by Min and Yorkshire pigs. Our results exhibited that cold exposure induced glucose overconsumption in non-cold-adapted pig models (Yorkshire pigs), decreasing plasma glucose concentrations. In this case, cold exposure enhanced the ATGL and CPT-1α expression to promote liver lipolysis and fatty acid oxidation. Meanwhile, the two probiotics (CollinsellaandBifidobacterium) depletion and the enrichment of two pathogens (SutterellaandEscherichia-Shigella) in colonic microbiota are not conducive to colonic mucosal immunity. However, glucagon-mediated hepatic glycogenolysis in cold-adapted pig models (Min pigs) maintained the stability of glucose homeostasis during cold exposure. It contributed to the gut microbiota (including the enrichment of theRikenellaceae RC9 gut group,[Eubacterium] coprostanoligenes groupandWCHB1-41) that favored cold-adapted metabolism.ConclusionsThe results of both models indicate that the gut microbiota during cold adaptation contributes to the protection of the colonic mucosa. During non-cold adaptation, cold-induced glucose overconsumption promotes thermogenesis through lipolysis, but interferes with the gut microbiome and colonic mucosal immunity. Furthermore, glucagon-mediated hepatic glycogenolysis contributes to glucose homeostasis during cold exposure.

Funder

National Key R&D Program of China

Major Program of Heilongjiang Province of China

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Biochemistry,Food Science,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3