Phantom and clinical evaluation of the effect of a new Bayesian penalized likelihood reconstruction algorithm (HYPER Iterative) on 68Ga-DOTA-NOC PET/CT image quality

Author:

Xu Lei,Cui Can,Li Rushuai,Yang Rui,Liu Rencong,Meng Qingle,Wang Feng

Abstract

Abstract Background Bayesian penalized likelihood (BPL) algorithm is an effective way to suppress noise in the process of positron emission tomography (PET) image reconstruction by incorporating a smooth penalty. The strength of the smooth penalty is controlled by the penalization factor. The aim was to investigate the impact of different penalization factors and acquisition times in a new BPL algorithm, HYPER Iterative, on the quality of 68Ga-DOTA-NOC PET/CT images. A phantom and 25 patients with neuroendocrine neoplasms who underwent 68Ga-DOTA-NOC PET/CT were included. The PET data were acquired in a list-mode with a digital PET/CT scanner and reconstructed by ordered subset expectation maximization (OSEM) and the HYPER Iterative algorithm with seven penalization factors between 0.03 and 0.5 for acquisitions of 2 and 3 min per bed position (m/b), both including time-of-flight and point of spread function recovery. The contrast recovery (CR), background variability (BV) and radioactivity concentration ratio (RCR) of the phantom; The SUVmean and coefficient of variation (CV) of the liver; and the SUVmax of the lesions were measured. Image quality was rated by two radiologists using a five-point Likert scale. Results The CR, BV, and RCR decreased with increasing penalization factors for four “hot” spheres, and the HYPER Iterative 2 m/b groups with penalization factors of 0.07 to 0.2 had equivalent CR and superior BV performance compared to the OSEM 3 m/b group. The liver SUVmean values were approximately equal in all reconstruction groups (range 5.95–5.97), and the liver CVs of the HYPER Iterative 2 m/b and 3 m/b groups with the penalization factors of 0.1 to 0.2 were equivalent to those of the OSEM 3 m/b group (p = 0.113–0.711 and p = 0.079–0.287, respectively), while the lesion SUVmax significantly increased by 19–22% and 25%, respectively (all p < 0.001). The highest qualitative score was attained at a penalization factor of 0.2 for the HYPER Iterative 2 m/b group (3.20 ± 0.52) and 3 m/b group (3.70 ± 0.36); those scores were comparable to or greater than that of the OSEM 3 m/b group (3.09 ± 0.36, p = 0.388 and p < 0.001, respectively). Conclusions The HYPER Iterative algorithm with a penalization factor of 0.2 resulted in higher lesion contrast and lower image noise than OSEM for 68Ga-DOTA-NOC PET/CT, allowing the same image quality to be achieved with less injected radioactivity and a shorter acquisition time.

Funder

Nanjing Municipal Health Science and Technology Development Fund

National Natural Science Foundation of China

Jiangsu Provincial Frontier Grant

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3