Aβ42 oligomer-specific antibody ALZ-201 reduces the neurotoxicity of Alzheimer’s disease brain extracts

Author:

Sandberg Anders,Berenjeno-Correa Ernesto,Rodriguez Rosa Crespo,Axenhus Michael,Weiss Sophia Schedin,Batenburg Kevin,Hoozemans Jeroen J. M.,Tjernberg Lars O.,Scheper Wiep

Abstract

Abstract Background In Alzheimer’s disease (AD), amyloid-β 1–42 (Aβ42) neurotoxicity stems mostly from its soluble oligomeric aggregates. Studies of such aggregates have been hampered by the lack of oligomer-specific research tools and their intrinsic instability and heterogeneity. Here, we developed a monoclonal antibody with a unique oligomer-specific binding profile (ALZ-201) using oligomer-stabilising technology. Subsequently, we assessed the etiological relevance of the Aβ targeted by ALZ-201 on physiologically derived, toxic Aβ using extracts from post-mortem brains of AD patients and controls in primary mouse neuron cultures. Methods Mice were immunised with stable oligomers derived from the Aβ42 peptide with A21C/A30C mutations (AβCC), and ALZ-201 was developed using hybridoma technology. Specificity for the oligomeric form of the Aβ42CC antigen and Aβ42 was confirmed using ELISA, and non-reactivity against plaques by immunohistochemistry (IHC). The antibody’s potential for cross-protective activity against pathological Aβ was evaluated in brain tissue samples from 10 individuals confirmed as AD (n=7) and non-AD (n=3) with IHC staining for Aβ and phosphorylated tau (p-Tau) aggregates. Brain extracts were prepared and immunodepleted using the positive control 4G8 antibody, ALZ-201 or an isotype control to ALZ-201. Fractions were biochemically characterised, and toxicity assays were performed in primary mouse neuronal cultures using automated high-content microscopy. Results AD brain extracts proved to be more toxic than controls as demonstrated by neuronal loss and morphological determinants (e.g. synapse density and measures of neurite complexity). Immunodepletion using 4G8 reduced Aβ levels in both AD and control samples compared to ALZ-201 or the isotype control, which showed no significant difference. Importantly, despite the differential effect on the total Aβ content, the neuroprotective effects of 4G8 and ALZ-201 immunodepletion were similar, whereas the isotype control showed no effect. Conclusions ALZ-201 depletes a toxic species in post-mortem AD brain extracts causing a positive physiological and protective impact on the integrity and morphology of mouse neurons. Its unique specificity indicates that a low-abundant, soluble Aβ42 oligomer may account for much of the neurotoxicity in AD. This critical attribute identifies the potential of ALZ-201 as a novel drug candidate for achieving a true, clinical therapeutic effect in AD.

Publisher

Springer Science and Business Media LLC

Subject

Cognitive Neuroscience,Neurology (clinical),Neurology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3