A single motor-driven continuum robot that can be designed to deform into a complex shape with curvature distribution

Author:

Yoshikawa Daiki,Shimizu Masahiro,Umedachi Takuya

Abstract

AbstractThis paper proposes a method to deform a continuum robot into a complex shape with distributed curvature using a single motor drive. This continuum robot can be deformed to a desired shape by placing tendon guides at appropriate intervals. We used several target shapes, including clothoid and sin curves, as well as a circular curve of constant curvature and confirmed that the deformed shapes match them both in the simulation and prototype. This paper proposes two models of continuum robots. One is the Plain Model in which the tendons are parallel to the rod and the Penetration Model in which the tendon penetrates to the rod. By placing the penetrating position(s), this continuum robot can be deformed into a shape with inflection point(s). We designed a mathematical model to simulate the deformed shape of the prototype to obtain the proper placement of the guides and penetration point(s). Through the optimization, it was able to find the parameters that, in most cases, result in the error of less than $$4\%$$ 4 % between the target and deformed shapes on simulation. We applied these conditions to the prototype and evaluated the errors, which were approximately $$10\%$$ 10 % , the same as the related works that use a conventional constant curvature model. We think that the results of this paper can be applied to reduce the number of actuators required and the size and weight of continuum or biomimetic robots.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering,Instrumentation,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3