The Bdkrb2 gene family provides a novel view of viviparity adaptation in Sebastes schlegelii

Author:

Niu Jingjing,Song Weihao,Li Rui,Yu Haiyang,Guan Jian,Qi Jie,He YanORCID

Abstract

Abstract Background Black rockfish (Sebastes schlegelii) is a viviparous teleost. We proposed that the rockfish ovarian wall had a similar function to the uterus of mammals previously. In the present study, the well-developed vascular system was observed in the ovarian wall and the exterior surface of the egg membrane. In gestation, adaptation of the ovary vasculature to the rising needs of the embryos occurs through both vasodilation and neovascularization. Bdkrb2, encoding a receptor for bradykinin, plays a critical role in the control of vasodilatation by regulating nitric oxide production. Results Eight Bdkrb2 genes were identified in the black rockfish genome. These genes were located on chromosome 14, which are arranged in a tandem array, forming a gene cluster spanning 50 kb. Protein structure prediction, phylogenetic analysis, and transcriptome analysis showed that eight Bdkrb2 genes evolved two kinds of protein structure and three types of tissue expression pattern. Overexpression of two Bdkrb2 genes in zebrafish indicated a role of them in blood vessel formation or remodeling, which is an important procedure for the viviparous rockfish getting prepared for fertilization and embryos implantation. Conclusions Our study characterizes eight Bdrkb2 genes in the black rockfish, which may contribute to preparation for fertilization and embryo implantation. This research provides a novel view of viviparity adaptation and lays the groundwork for future research into vascular regulation of ovarian tissue in the breeding cycle in black rockfish.

Funder

National Natural Science Foundation of China

National Key R & D Program of China

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3