Game theory elucidates how competitive dynamics mediate animal social networks

Author:

Dubois Frédérique

Abstract

Abstract Background While most game theoretical models assume that individuals randomly interact with all other group members, strong evidence indicates that individuals tend to preferentially interact with some of them. The position of an individual in a network affects, among other factors related to survival, its predation risk and competitive success. Here I then modified the Hawk-Dove game to explore the effect of social network structure on competitive strategy of individuals that differ in their fighting ability and may adjust their use of the Hawk, Dove and Assessor tactics to maximize their foraging success when they meet opponents they are connected with. Results From randomly generated networks, I demonstrate that phenotypic assortment by fighting ability reduces individuals’ aggressiveness and, as such, favours cooperative interactions. Furthermore, the success of individuals with the weakest fighting ability is usually highest within networks where they most frequently meet opponents with the same fighting ability as their own, suggesting they might benefit from breaking connections with strong contestants. This might be the case when strong contestants systematically rely on the aggressive Hawk tactic or the risk of being predated is low and independent of the number of neighbours. Thus, I extended the model and built a dynamic model to allow individuals not only to adjust their behaviour to local conditions but also to modify the structure of the social network. The number of connections and degree of phenotypic assortment are then affected by ecological factors (e.g. resources value and predation risk), but above all by whether individuals can reliably assess the competitive ability of their opponents and adjust their behaviour accordingly. Conclusions These findings provide strong evidence that behaviour can play a key role in shaping network structure and highlight the importance of considering the coevolution of network and behaviour to apprehend its consequences on population dynamics.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3