Analysis of 5’ gene regions reveals extraordinary conservation of novel non-coding sequences in a wide range of animals

Author:

Davies Nathaniel J.,Krusche Peter,Tauber EranORCID,Ott Sascha

Abstract

Abstract Background Phylogenetic footprinting is a comparative method based on the principle that functional sequence elements will acquire fewer mutations over time than non-functional sequences. Successful comparisons of distantly related species will thus yield highly important sequence elements likely to serve fundamental biological roles. RNA regulatory elements are less well understood than those in DNA. In this study we use the emerging model organism Nasonia vitripennis, a parasitic wasp, in a comparative analysis against 12 insect genomes to identify deeply conserved non-coding elements (CNEs) conserved in large groups of insects, with a focus on 5’ UTRs and promoter sequences. Results We report the identification of 322 CNEs conserved across a broad range of insect orders. The identified regions are associated with regulatory and developmental genes, and contain short footprints revealing aspects of their likely function in translational regulation. The most ancient regions identified in our analysis were all found to overlap transcribed regions of genes, reflecting stronger conservation of translational regulatory elements than transcriptional elements. Further expanding sequence analyses to non-insect species we also report the discovery of, to our knowledge, the two oldest and most ubiquitous CNE’s yet described in the animal kingdom (700 MYA). These ancient conserved non-coding elements are associated with the two ribosomal stalk genes, RPLP1 and RPLP2, and were very likely functional in some of the earliest animals. Conclusions We report the identification of the most deeply conserved CNE’s found to date, and several other deeply conserved elements which are without exception, part of 5’ untranslated regions of transcripts, and occur in a number of key translational regulatory genes, highlighting translational regulation of translational regulators as a conserved feature of insect genomes.

Funder

Biotechnology and Biological Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3