The role of big data management, data registries, and machine learning algorithms for optimizing safe definitive surgery in trauma: a review

Author:

Pape Hans-Christoph,Starr Adam J.,Gueorguiev Boyko,Wanner Guido A.

Abstract

AbstractDigital data processing has revolutionized medical documentation and enabled the aggregation of patient data across hospitals. Initiatives such as those from the AO Foundation about fracture treatment (AO Sammelstudie, 1986), the Major Trauma Outcome Study (MTOS) about survival, and the Trauma Audit and Research Network (TARN) pioneered multi-hospital data collection. Large trauma registries, like the German Trauma Registry (TR-DGU) helped improve evidence levels but were still constrained by predefined data sets and limited physiological parameters. The improvement in the understanding of pathophysiological reactions substantiated that decision making about fracture care led to development of patient’s tailored dynamic approaches like the Safe Definitive Surgery algorithm. In the future, artificial intelligence (AI) may provide further steps by potentially transforming fracture recognition and/or outcome prediction. The evolution towards flexible decision making and AI-driven innovations may be of further help. The current manuscript summarizes the development of big data from local databases and subsequent trauma registries to AI-based algorithms, such as Parkland Trauma Mortality Index and the IBM Watson Pathway Explorer.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3