Medical glove durability during exposure to different solvent agents: an ex-vivo experimental study

Author:

Herkins Ashley,Cornish Katrina

Abstract

Abstract Background Medical professionals are constantly exposed to bodily fluids and sanitizing agents during routine medical procedures. Unbeknownst to many healthcare workers, however, the barrier integrity of medical gloves can be altered when exposed to these substances, potentially resulting in exposure to dangerous pathogens. Methods This experimental study was designed to test the hypothesis that the durability of both natural and synthetic solvent-exposed medical gloves will be lower than the durability of the gloves in air. The testing consisted of a sample of commercially available medical gloves exposed to 70% ethanol, phosphate buffered saline, and deionized water, aimed at simulating the environments in which medical gloves are commonly worn. Gloves were included in this study based on their performance in previous durability studies in air. Data were collected over a period of three months. The glove assessment device automatically detects pinhole-sized perforations in medical gloves, eliminating the need to visually inspect each glove. Relative durability was measured as the average number of sandpaper touches until glove puncture. Results Four out of five glove brands performed better when exposed to all three solvents than in air, which is likely due to slippage in the interface between the wet glove and the sandpaper. Sensicare Micro, a polyisoprene surgical glove, had the most consistent durability in all three solvents tested. A two-way ANOVA revealed that both glove brand (P = 0.0001), solvent (P = 0.0001), and their interaction (P = 0.0040, α = 0.05) significantly affected average glove durability. Conclusions Glove durability did not remain consistent in 70% ethanol, phosphate buffered saline, deionized water, and air. These results make it clear that additional testing and labeling information would help healthcare workers select gloves for use in specific environments to ensure the best barrier protection against disease or toxins.

Funder

National Institute of Food and Agriculture

Publisher

Springer Science and Business Media LLC

Reference18 articles.

1. Medical Device Shortages List [Internet]. [place unknown]: United States Food and Drug Administration. 2024. https://www.fda.gov/medical-devices/coronavirus-covid-19-and-medical-devices/medical-device-shortages-during-covid-19-public-health-emergency.

2. Herkins A, Cornish K. Durability variation among medical gloves made from existing and New Elastomers poses a risk to Public Health. Glob Chall. 2023;7(9).

3. Bardorf MH, Jager B, Boeckmans E, Kramer A, Assadian O. Influence of material properties on gloves’ bacterial barrier efficacy in the presence of microperforation. Am J Infect Control. 2016;44(12):1645–9.

4. Michel R, Cornish K, Comparing Natural, Synthetic Latex Gloves., Rubber. & Plastic News [Internet]. 2016 Jan 11. https://s3-prod.rubbernews.com/s3fs-public/RN10326818.PDF.

5. Tlili MA, Belgacem A, Sridi H, Akouri M, Aouicha W, Soussi S, et al. Evaluation of surgical glove integrity and factors associated with glove defect. Am J Infect Control. 2018;46(1):30–3.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3