Innovative flexible thermal storage textile using nanocomposite shape-stabilized phase change materials

Author:

Zeighampour Farideh,Khoddami Akbar,Dolez Patricia I.

Abstract

AbstractA novel flexible thermal storage system based on organic phase change materials (PCMs) deposited on a non-woven polyester (PET) substrate is described in this article. Thermally regulating effects were created via encapsulation of polyethylene glycol (PEG) in carbon nanofibers (CNFs) to manufacture a shape-stable phase change material (SSPCM). Improvement in the thermal conductivity (TC) of the system was obtained by incorporating reduced graphite oxide nanoparticles (rGONP) into the CNFs. A new method was applied to load and secure the manufactured SSPCMs on the fibrous substrate so that an acceptable level of flexibility was preserved (change in bending length less than 30%). The sample performance was evaluated by measuring its thermal properties. The physical properties, wash fastness, abrasion resistance, morphology, and PCM leakage of the samples were also assessed. The results point to a good thermal storage ability of the samples with characteristic phase change temperature ranges of 30.1–31.4 °C and 19.2–24.3 °C for melting and freezing, respectively, and a latent heat of 8.9–22.9 J g−1 for meting and 11.2–21.4 J g−1 for freezing. The use of the CNF-rGONP for PEG enhanced the TC of the system by 454%, thus providing a rapid thermal response, and efficiently prevented the leakage of PEG. Finally, the loading and fixation method on the non-woven substrate allowed an acceptable level of durability with less than 4% of weight loss during washing and abrasion tests. This system provides a promising solution for rapid response, flexible thermal storage wearables.

Publisher

Springer Science and Business Media LLC

Subject

Marketing,Strategy and Management,Materials Science (miscellaneous),Cultural Studies,Social Psychology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3