Shape recovery properties of 3D printed re-entrant strip using shape memory thermoplastic polyurethane filaments with various temperature conditions

Author:

Jung Imjoo,Lee SunheeORCID

Abstract

AbstractIn this research, to confirm the applicability as the actuator of the re-entrant (RE) structure strip using 3D printing with shape memory thermoplastic polyurethane material, two types of 3D printing infill conditions and five extension temperature conditions were applied. REstrip was analyzed through differential scanning calorimetry (DSC), tensile properties, Poisson’s ratio properties, and shape recovery properties according to temperature conditions. The DSC results showed that the glass transition temperature peaks of the SMTPU filament and the 3D printed REstrip were in the range of about 30–60 °C. In terms of tensile properties, the initial modulus, maximum stress, and yield stress of REstrip all decreased, while the elongation at break increased with increasing extension temperature. In terms of Poisson’s ratio, it was confirmed that as the extension temperature rises, Poisson’s ratio shows a positive value at a lower elongation, and the deformation is best at 50 °C. As a result of the shape memory property, the shape recovery ratio tended to decrease as the tensile deformation temperature increased.

Funder

NRF

Publisher

Springer Science and Business Media LLC

Subject

Marketing,Strategy and Management,Materials Science (miscellaneous),Cultural Studies,Social Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3