Brain MR findings in patients treated with particle therapy for skull base tumors

Author:

Viselner Gisela,Farina Lisa,Lucev Federica,Turpini Elena,Lungarotti Luca,Bacila Ana,Iannalfi Alberto,D’Ippolito Emma,Vischioni Barbara,Ronchi Sara,Marchioni Enrico,Valvo Francesca,Bastianello Stefano,Preda LorenzoORCID

Abstract

Abstract Nowadays, hadrontherapy is increasingly used for the treatment of various tumors, in particular of those resistant to conventional radiotherapy. Proton and carbon ions are characterized by physical and biological features that allow a high radiation dose to tumors, minimizing irradiation to adjacent normal tissues. For this reason, radioresistant tumors and tumors located near highly radiosensitive critical organs, such as skull base tumors, represent the best target for this kind of therapy. However, also hadrontherapy can be associated with radiation adverse effects, generally referred as acute, early-delayed and late-delayed. Among late-delayed effects, the most severe form of injury is radiation necrosis. There are various underlying mechanisms involved in the development of radiation necrosis, as well as different clinical presentations requiring specific treatments. In most cases, radiation necrosis presents as a single focal lesion, but it can be multifocal and involve a single or multiple lobes simulating brain metastasis, or it can also involve both cerebral hemispheres. In every case, radiation necrosis results always related to the extension of radiation delivery field. Multiple MRI techniques, including diffusion, perfusion imaging, and spectroscopy, are important tools for the radiologist to formulate the correct diagnosis. The aim of this paper is to illustrate the possible different radiologic patterns of radiation necrosis that can be observed in different MRI techniques in patients treated with hadrontherapy for tumors involving the skull base. The images of exemplary cases of radiation necrosis are also presented.

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3