Improving detection of impacted animal bones on lateral neck radiograph using a deep learning artificial intelligence algorithm

Author:

Chen Yueh-Sheng,Luo Sheng-Dean,Lee Chi-Hsun,Lin Jian-Feng,Lin Te-Yen,Ko Sheung-Fat,Yu Chiun-Chieh,Chiang Pi-Ling,Wang Cheng-Kang,Chiu I.-Min,Huang Yii-Ting,Tai Yi-Fan,Chiang Po-Teng,Lin Wei-Che

Abstract

Abstract Objective We aimed to develop a deep learning artificial intelligence (AI) algorithm to detect impacted animal bones on lateral neck radiographs and to assess its effectiveness for improving the interpretation of lateral neck radiographs. Methods Lateral neck radiographs were retrospectively collected for patients with animal bone impaction between January 2010 and March 2020. Radiographs were then separated into training, validation, and testing sets. A total of 1733 lateral neck radiographs were used to develop the deep learning algorithm. The testing set was assessed for the stand-alone deep learning AI algorithm and for human readers (radiologists, radiology residents, emergency physicians, ENT physicians) with and without the aid of the AI algorithm. Another radiograph cohort, collected from April 1, 2020, to June 30, 2020, was analyzed to simulate clinical application by comparing the deep learning AI algorithm with radiologists’ reports. Results In the testing set, the sensitivity, specificity, and accuracy of the AI model were 96%, 90%, and 93% respectively. Among the human readers, all physicians of different subspecialties achieved a higher accuracy with AI-assisted reading than without. In the simulation set, among the 20 cases positive for animal bones, the AI model accurately identified 3 more cases than the radiologists’ reports. Conclusion Our deep learning AI model demonstrated a higher sensitivity for detection of animal bone impaction on lateral neck radiographs without an increased false positive rate. The application of this model in a clinical setting may effectively reduce time to diagnosis, accelerate workflow, and decrease the use of CT.

Funder

Kaohsiung Chang Gung Memorial Hospital

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Reference28 articles.

1. Sands NB, Richardson K, Mlynarek A (2012) A bone to pick? Fish bones of the upper aerodigestive tract: review of the literature. J Otolaryngol Head Neck Surg 41:374–380

2. Connolly AA, Birchall M, Walsh-Waring GP, Moore-Gillon V (1992) Ingested foreign bodies: patient-guided localization is a useful clinical tool. Clin Otolaryngol Allied Sci 17:520–524

3. Castan Senar A, Dinu LE, Artigas JM, Larrosa R, Navarro Y, Angulo E (2017) Foreign bodies on lateral neck radiographs in adults: imaging findings and common pitfalls. Radiographics 37:323–345

4. Haglund S, Haverling M, Kuylenstierna R, Lind MG (1978) Radiographic diagnosis of foreign bodies in the oesophagus. J Laryngol Otol 92:1117–1125

5. Malik SA, Qureshi IA, Muhammad R (2018) diagnostic accuracy of plain X-ray lateral neck in the diagnosis of cervical esophageal foreign bodies keeping oesophagoscopy as gold standard. J Ayub Med Coll Abbottabad 30:386–388

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3