MRI-based radiomics analysis improves preoperative diagnostic performance for the depth of stromal invasion in patients with early stage cervical cancer

Author:

Ren Jing,Li Yuan,Yang Jun-Jun,Zhao Jia,Xiang Yang,Xia Chen,Cao Ying,Chen Bo,Guan Hui,Qi Ya-Fei,Tang Wen,Chen Kuan,He Yong-LanORCID,Jin Zheng-Yu,Xue Hua-Dan

Abstract

Abstract Background The depth of cervical stromal invasion is one of the important prognostic factors affecting decision-making for early stage cervical cancer (CC). This study aimed to develop and validate a T2-weighted imaging (T2WI)-based radiomics model and explore independent risk factors (factors with statistical significance in both univariate and multivariate analyses) of middle or deep stromal invasion in early stage CC. Methods Between March 2017 and March 2021, a total of 234 International Federation of Gynecology and Obstetrics IB1-IIA1 CC patients were enrolled and randomly divided into a training cohort (n = 188) and a validation cohort (n = 46). The radiomics features of each patient were extracted from preoperative sagittal T2WI, and key features were selected. After independent risk factors were identified, a combined model and nomogram incorporating radiomics signature and independent risk factors were developed. Diagnostic accuracy of radiologists was also evaluated. Results The maximal tumor diameter (MTD) on magnetic resonance imaging was identified as an independent risk factor. In the validation cohort, the radiomics model, MTD, and combined model showed areas under the curve of 0.879, 0.844, and 0.886. The radiomics model and combined model showed the same sensitivity and specificity of 87.9% and 84.6%, which were better than radiologists (sensitivity, senior = 75.7%, junior = 63.6%; specificity, senior = 69.2%, junior = 53.8%) and MTD (sensitivity = 69.7%, specificity = 76.9%). Conclusion MRI-based radiomics analysis outperformed radiologists for the preoperative diagnosis of middle or deep stromal invasion in early stage CC, and the probability can be individually evaluated by a nomogram.

Funder

Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3