Chitosan alleviates ovarian aging by enhancing macrophage phagocyte-mediated tissue homeostasis

Author:

Shen Hui-Hui,Zhang Xin-Yan,Liu Nan,Zhang Yang-Yang,Wu Hui-Hua,Xie Feng,Wang Wen-Jun,Li Ming-Qing

Abstract

Abstract Background Age-related changes in the ovarian microenvironment are linked to impaired fertility in women. Macrophages play important roles in ovarian tissue homeostasis and immune surveillance. However, the impact of aging on ovarian macrophage function and ovarian homeostasis remains poorly understood. Methods Senescence-associated beta-galactosidase staining, immunohistochemistry, and TUNEL staining were used to assess senescence and apoptosis, respectively. Flow cytometry was employed to evaluate mitochondrial membrane potential (MMP) and apoptosis in granulosa cells lines (KGN), and macrophages phagocytosis. After a 2-month treatment with low molecular weight Chitosan (LMWC), ovarian tissues from mice were collected for comprehensive analysis. Results Compared with the liver and uterus, the ovary displayed accelerated aging in an age-dependent manner, which was accompanied by elevated levels of inflammatory factors and apoptotic cells, and impaired macrophage phagocytic activity. The aged KGN cells exhibited elevated reactive oxygen species (ROS) and apoptotic levels alongside decreased MMP. H2O2-induced aging macrophages showed reduced phagocytosis function. Moreover, there were excessive aging macrophages with impaired phagocytosis in the follicular fluid of patients with diminished ovarian reserve (DOR). Notably, LMWC administration alleviated ovarian aging by enhancing macrophage phagocytosis and promoting tissue homeostasis. Conclusions Aging ovarian is characterized by an accumulation of aging and apoptotic granulosa cells, an inflammatory response and macrophage phagocytosis dysfunction. In turn, impaired phagocytosis of macrophage contributes to insufficient clearance of aging and apoptotic granulosa cells and the increased risk of DOR. Additionally, LMWC emerges as a potential therapeutic strategy for age-related ovarian dysfunction.

Funder

National Natural Science Foundation of China

Clinical Research Project of Shanghai Municipal Health Commission

Natural Science Foundation of Shanghai Municipality

Program for Zhuoxue of Fudan University

National Key Research and Development Program of China

Shanghai Oriental Talent Plan

Publisher

Springer Science and Business Media LLC

Subject

Aging,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3