Author:
Zhang Xinyue,Zhan Xue,Cheng Haojin,Dong Zuqin,Hu Chen,Liu Chenxin,Liang Jie,Chen Yafang,Fan Yujiang,Zhang Xingdong
Abstract
AbstractThe regeneration of articular cartilage posed a formidable challenge due to the restricted treatment efficacy of existing therapies. Scaffold-based tissue engineering emerges as a promising avenue for cartilage reconstitution. However, most scaffolds exhibit inadequate mechanical characteristics, poor biocompatibility, or absent cell adhesion sites. In this study, cartilage-like protein-polysaccharide hybrid hydrogel based on DOPA-modified hyaluronic acid, bovine type I collagen (Col I), and recombinant humanized type II collagen (rhCol II), denoted as HDCR. HDCR hydrogels possessed the advantage of injectability and in situ crosslinking through pH adjustment. Moreover, HDCR hydrogels exhibited a manipulable degradation rate and favorable biocompatibility. Notably, HDCR hydrogels significantly induced chondrogenic differentiation of rabbit bone marrow mesenchymal stem cells in vitro, as demonstrated by the upregulation of crucial chondrogenic genes (type II collagen, aggrecan) and the abundant accumulation of glycosaminoglycan. This approach presented a strategy to manufacture injectable, biodegradable scaffolds based on cartilage-like protein-polysaccharide polymers, offering a minimally invasive solution for cartilage repair.
Graphical abstract
Funder
National Key Research and Development Program of China
Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China
Sichuan University postdoctoral interdisciplinary Innovation Fund
Publisher
Springer Science and Business Media LLC
Reference37 articles.
1. Arden NK, Perry TA, Bannuru RR, Bruyère O, Cooper C, Haugen IK, et al. Non-surgical management of knee osteoarthritis: comparison of ESCEO and OARSI 2019 guidelines. Nat Rev Rheumatol. 2021;17(1):59–66.
2. Tuli R, Li W-J, Tuan RS. Current state of cartilage tissue engineering. Arthritis Res Ther. 2003;5(5):1–4.
3. Armiento AR, Alini M, Stoddart MJ. Articular fibrocartilage—why does hyaline cartilage fail to repair? Adv Drug Deliv Rev. 2019;146:289–305.
4. Sarzaeem MM, Razi M, Kazemian G, Moghaddam ME, Rasi AM, Karimi M. Comparing efficacy of three methods of tranexamic acid administration in reducing hemoglobin drop following total knee arthroplasty. J Arthroplast. 2014;29(8):1521–4.
5. Wang Z, Le H, Wang Y, Liu H, Li Z, Yang X, et al. Instructive cartilage regeneration modalities with advanced therapeutic implantations under abnormal conditions. Bioact Mater. 2022;11:317–38.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献