Inter-organ communication involved in metabolic regulation at the whole-body level

Author:

Katagiri HidekiORCID

Abstract

AbstractMetabolism in each organ of multi-organ organisms, including humans, is regulated in a coordinated manner to dynamically maintain whole-body homeostasis. Metabolic information exchange among organs/tissues, i.e., inter-organ communication, which is necessary for this purpose, has been a subject of ongoing research. In particular, it has become clear that metabolism of energy, glucose, lipids, and amino acids is dynamically regulated at the whole-body level mediated by the nervous system, including afferent, central, and efferent nerves. These findings imply that the central nervous system obtains metabolic information from peripheral organs at all times and sends signals selectively to peripheral organs/tissues to maintain metabolic homeostasis, and that the liver plays an important role in sensing and transmitting information on the metabolic status of the body. Furthermore, the utilization of these endogenous mechanisms is expected to lead to the development of novel preventive/curative therapies for metabolic diseases such as diabetes and obesity.(This is a summarized version of the subject matter presented at Symposium 7 presented at the 43rd Annual Meeting of the Japanese Society of Inflammation and Regeneration.)

Publisher

Springer Science and Business Media LLC

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3