Combined Dusp4 and p53 loss with Dbf4 amplification drives tumorigenesis via cell cycle restriction and replication stress escape in breast cancer

Author:

Hanna Ann,Nixon Mellissa J.,Estrada M. Valeria,Sanchez Violeta,Sheng Quanhu,Opalenik Susan R.,Toren Abigail L.,Bauer Joshua,Owens Phillip,Mason Frank M.,Cook Rebecca S.,Sanders Melinda E.,Arteaga Carlos L.,Balko Justin M.ORCID

Abstract

Abstract Aim Deregulated signaling pathways are a hallmark feature of oncogenesis and driver of tumor progression. Dual specificity protein phosphatase 4 (DUSP4) is a critical negative regulator of the mitogen-activated protein kinase (MAPK) pathway and is often deleted or epigenetically silenced in tumors. DUSP4 alterations lead to hyperactivation of MAPK signaling in many cancers, including breast cancer, which often harbor mutations in cell cycle checkpoint genes, particularly in TP53. Methods Using a genetically engineered mouse model, we generated mammary-specific Dusp4-deleted primary epithelial cells to investigate the necessary conditions in which DUSP4 loss may drive breast cancer oncogenesis. Results We found that Dusp4 loss alone is insufficient in mediating tumorigenesis, but alternatively converges with loss in Trp53 and MYC amplification to induce tumorigenesis primarily through chromosome 5 amplification, which specifically upregulates Dbf4, a cell cycle gene that promotes cellular replication by mediating cell cycle checkpoint escape. Conclusions This study identifies a novel mechanism for breast tumorigenesis implicating Dusp4 loss and p53 mutations in cellular acquisition of Dbf4 upregulation as a driver of cellular replication and cell cycle checkpoint escape.

Funder

Susan G. Komen for the Cure

National Cancer Institute

U.S. Department of Defense

Vanderbilt-Ingram Cancer Center

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3