Upregulation of Nox4 induces a pro-survival Nrf2 response in cancer-associated fibroblasts that promotes tumorigenesis and metastasis, in part via Birc5 induction

Author:

Mir Shakeel,Golden Briana D. Ormsbee,Griess Brandon J.,Vengoji Raghupathy,Tom Eric,Kosmacek Elizabeth A.,Oberley-Deegan Rebecca E.,Talmon Geoffrey A.,Band Vimla,Teoh-Fitzgerald Melissa LT.

Abstract

Abstract Background A pro-oxidant enzyme, NADPH oxidase 4 (Nox4) has been reported to be a critical downstream effector of TGFβ-induced myofibroblast transformation during fibrosis. While there are a small number of studies suggesting an oncogenic role of Nox4 derived from activated fibroblasts, direct evidence linking this pro-oxidant to the tumor-supporting CAF phenotype and the mechanisms involved are lacking, particularly in breast cancer. Methods We targeted Nox4 in breast patient-derived CAFs via siRNA-mediated knockdown or administration of a pharmaceutical inhibitor (GKT137831). We also determine primary tumor growth and metastasis of implanted tumor cells using a stable Nox4-/- syngeneic mouse model. Autophagic flux of CAFs was assessed using a tandem fluorescent-tagged ptfl-LC3 plasmid via confocal microscopy analysis and determination of the expression level of autophagy markers (beclin-1 and LC3B). Nox4 overexpressing CAFs depend on the Nrf2 (nuclear factor-erythroid factor 2-related factor 2) pathway for survival. We then determined the dependency of Nox4-overexpressing CAFs on the Nrf2-mediated adaptive stress response pathway for survival. Furthermore, we investigated the involvement of Birc5 on CAF phenotype (viability and collagen contraction activity) as well as the expression level of CAF markers, FAP and αSMA. Conclusions We found that deletion of stroma Nox4 and pharmaceutically targeting its activity with GKT137831 significantly inhibited orthotopic tumor growth and metastasis of implanted E0771 and 4T1 murine mammary carcinoma cell lines in mice. More importantly, we found a significant upregulation of Nox4 expression in CAFs isolated from human breast tumors versus normal mammary fibroblasts (RMFs). Our in situ RNA hybridization analysis for Nox4 transcription on a human breast tumor microarray further support a role of this pro-oxidant in the stroma of breast carcinomas. In addition, we found that Nox4 promotes autophagy in CAFs. Moreover, we found that Nox4 promoted survival of CAFs via activation of Nrf2, a master regulator of oxidative stress response. We have further shown Birc5 is involved as a downstream modulator of Nrf2-mediated pro-survival phenotype. Together these studies indicate a role of redox signaling via the Nox4-Nrf2 pathway in tumorigenesis and metastasis of breast cancer cells by promoting autophagy and survival of CAFs.

Funder

Eppley Institute in Cancer Biology Training Grant

Office of Extramural Research, National Institutes of Health

Redox Biology Pilot Project Fund

Nebraska Department of Health and Human Services Award

Publisher

Springer Science and Business Media LLC

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3