The chromatin architectural regulator SND1 mediates metastasis in triple-negative breast cancer by promoting CDH1 gene methylation

Author:

Zhang Huibian,Gao Min,Zhao Wenying,Yu Lin

Abstract

Abstract Background SND1 participates in tumorigenesis, tumour invasion and metastasis in different cancers. Previous studies have shown that SND1 can promote the invasion and migration of breast cancer cells. Triple-negative breast cancer (TNBC) is a specific breast cancer subtype with high metastatic potential and poor prognosis. However, the specific roles and mechanisms of SND1 in TNBC metastasis remain unaddressed. Methods Immunostaining was used to detect the SND1 expression in tissue samples of 58 TNBC and 10 glioblastomas (GBM) as positive control. The correlation between SND1 expression and patient prognosis was assessed using the Kaplan–Meier estimator. The gene expression was evaluated by qRT-PCR, Western blot and immunofluorescence analyses. Gene Ontology analysis, ChIP, a dual-luciferase reporter assay, EMSA, and 3C analysis were applied to identify SND1-activated target genes. Bisulfite sequencing PCR and MeDIP were used to detect DNA methylation. We also used wound healing, Transwell and orthotopic implantation assays to investigate the function of SND1 in TNBC cell migration and invasion. Results The data of immunohistochemistry manifested that SND1 is the overexpression in metastasized TNBC and an independent factor for TNBC prognosis. SND1 knockdown inhibited the migration and invasion of TNBC cells. We found that SND1 promotes the metastatic phenotype of TNBC cells by epigenetically altering chromatin conformational interactions, which in turn activates DNMT3A transcription. Then, DNMT3A attenuates CCND1 expression by inducing CCND1 gene methylation, leading to TNBC metastasis. Conclusion SND1 can promote the invasion and migration of TNBC cells by promoting DNMT3A expression and suppressing CDH1 activity. SND1 is a potential biomarker and a promising therapeutic target for TNBC.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3