Machine learning models for prediction of invasion Klebsiella pneumoniae liver abscess syndrome in diabetes mellitus: a singled centered retrospective study

Author:

Feng Chengyi,Di Jia,Jiang Shufang,Li Xuemei,Hua Fei

Abstract

Abstract Objective This study aimed to develop and validate a machine learning algorithm-based model for predicting invasive Klebsiella pneumoniae liver abscess syndrome(IKPLAS) in diabetes mellitus and compare the performance of different models. Methods The clinical signs and data on the admission of 213 diabetic patients with Klebsiella pneumoniae liver abscesses were collected as variables. The optimal feature variables were screened out, and then Artificial Neural Network, Support Vector Machine, Logistic Regression, Random Forest, K-Nearest Neighbor, Decision Tree, and XGBoost models were established. Finally, the model's prediction performance was evaluated by the ROC curve, sensitivity (recall), specificity, accuracy, precision, F1-score, Average Precision, calibration curve, and DCA curve. Results Four features of hemoglobin, platelet, D-dimer, and SOFA score were screened by the recursive elimination method, and seven prediction models were established based on these variables. The AUC (0.969), F1-Score(0.737), Sensitivity(0.875) and AP(0.890) of the SVM model were the highest among the seven models. The KNN model showed the highest specificity (1.000). Except that the XGB and DT models over-estimates the occurrence of IKPLAS risk, the other models' calibration curves are a good fit with the actual observed results. Decision Curve Analysis showed that when the risk threshold was between 0.4 and 0.8, the net rate of intervention of the SVM model was significantly higher than that of other models. In the feature importance ranking, the SOFA score impacted the model significantly. Conclusion An effective prediction model of invasion Klebsiella pneumoniae liver abscess syndrome in diabetes mellitus could be established by a machine learning algorithm, which had potential application value.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3