Diagnostic accuracy of circulating microRNAs for hepatitis C virus-associated hepatocellular carcinoma: a systematic review and meta-analysis

Author:

Huang Yicheng,Chen Yingsha,Tu Sheng,Zhang Jiajie,Qiu Yunqing,Yu Wei

Abstract

Abstract Aims The purpose of this study was to perform an assessment of circulating microRNAs (miRNAs) as promising biomarker for hepatitis C virus (HCV)-associated hepatocellular carcinoma (HCV-HCC) through a meta-analysis. Methods A comprehensive literatures search extended up to March 1, 2020 in PubMed, Cochrane library, Embase, Web of Science, Scopus and Ovid databases. The collected data were analyzed by random-effects model, the pooled sensitivity (SEN), specificity (SPE), positive and negative likelihood ratios (PLR and NLR), diagnostic odds ratio (DOR), and area under the curve (AUC) were used to explore the diagnostic performance of circulating miRNAs. Meta-regression and subgroup analysis were further carried out to explore the heterogeneity. Results A total of 16 articles including 3606 HCV-HCC patients and 3387 HCV patients without HCC were collected. The pooled estimates indicated miRNAs could distinguish HCC patients from chronic hepatitis C (CHC) and HCV-associated liver cirrhosis (HCV-LC), with a SEN of 0.83 (95% CI, 0.79–0.87), a SPE of 0.77 (95% CI, 0.71–0.82), a DOR of 17 (95% CI, 12–28), and an AUC of 0.87 (95% CI, 0.84–0.90). The combination of miRNAs and AFP showed a better diagnostic accuracy than each alone. Subgroup analysis demonstrated that diagnostic accuracy of miRNAs was better for plasma types, up-regulated miRNAs, and miRNA clusters. There was no evidence of publication bias in Deeks’ funnel plot. Conclusions Circulating miRNAs, especially for miRNA clusters, have a relatively high diagnostic value for HCV-HCC from CHC and HCV-LC.

Funder

Department of Education of Zhejiang Province

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3