The predictive accuracy of machine learning for the risk of death in HIV patients: a systematic review and meta-analysis

Author:

Li Yuefei,Feng Ying,He Qian,Ni Zhen,Hu Xiaoyuan,Feng Xinhuan,Ni Mingjian

Abstract

Abstract Background Early prediction of mortality in individuals with HIV (PWH) has perpetually posed a formidable challenge. With the widespread integration of machine learning into clinical practice, some researchers endeavor to formulate models predicting the mortality risk for PWH. Nevertheless, the diverse timeframes of mortality among PWH and the potential multitude of modeling variables have cast doubt on the efficacy of the current predictive model for HIV-related deaths. To address this, we undertook a systematic review and meta-analysis, aiming to comprehensively assess the utilization of machine learning in the early prediction of HIV-related deaths and furnish evidence-based support for the advancement of artificial intelligence in this domain. Methods We systematically combed through the PubMed, Cochrane, Embase, and Web of Science databases on November 25, 2023. To evaluate the bias risk in the original studies included, we employed the Predictive Model Bias Risk Assessment Tool (PROBAST). During the meta-analysis, we conducted subgroup analysis based on survival and non-survival models. Additionally, we utilized meta-regression to explore the influence of death time on the predictive value of the model for HIV-related deaths. Results After our comprehensive review, we analyzed a total of 24 pieces of literature, encompassing data from 401,389 individuals diagnosed with HIV. Within this dataset, 23 articles specifically delved into deaths during long-term follow-ups outside hospital settings. The machine learning models applied for predicting these deaths comprised survival models (COX regression) and other non-survival models. The outcomes of the meta-analysis unveiled that within the training set, the c-index for predicting deaths among people with HIV (PWH) using predictive models stands at 0.83 (95% CI: 0.75–0.91). In the validation set, the c-index is slightly lower at 0.81 (95% CI: 0.78–0.85). Notably, the meta-regression analysis demonstrated that neither follow-up time nor the occurrence of death events significantly impacted the performance of the machine learning models. Conclusions The study suggests that machine learning is a viable approach for developing non-time-based predictions regarding HIV deaths. Nevertheless, the limited inclusion of original studies necessitates additional multicenter studies for thorough validation.

Funder

Autonomous Region Science and Technology Plan Project: Xinjiang HIV/AIDS Prevention and Control Research Key Laboratory

National “13th Five-Year Plan” Major Science and Technology Project

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3