Author:
El-Araby R.,Abdelkader E.,El Diwani G.,Hawash S. I.
Abstract
Abstract
Background
Biomass fuels (bio-jet fuel) have recently attracted considerable attention as alternatives to conventional jet fuel. They have become the focus of aircraft manufacturers, engines, oil companies, governments and researchers alike. This study is concerned with the production of biojet fuel using waste cooking oil (WCO). Batch reactor is used for running the experimental study. The catalytic cracking products are investigated by GC mass spectra. Final products from different reaction conditions are subjected to fractional distillation. The (Bio kerosene) fraction was compared with the conventional jet A-1 and showed that it met the basic jet fuel specifications. Optimum reaction conditions are obtained at (450 °C), pressure of (120 bars), catalyst dose (2.5% w/v), reaction time (60 min) and hydrogen pressure 4 atmosphere. The aim of this study is to produce bio aviation fuel according to specifications and with a low freezing point from waste cooking oil in one step using a laboratory prepared catalyst and with a low percentage of hydrogen to complete the process of cracking and deoxygenation in one reactor, which is naturally reflected positively on the price of the final product of bio aviation fuel.
Results
The results indicated that the product obtained from WCO shows promising potential bio aviation fuels, having a low freezing point (− 55 °C) and that all bio kerosene’s specifications obtained at these conditions follow the international standard specifications of aviation turbine fuel.
Conclusion
Biojet fuel obtained from WCO has fairly acceptable physico-chemical properties compared to those of petroleum-based fuel. Adjustment of the hydro catalytic cracking reaction conditions was used to control quantities and characteristics of produced bio aviation fuel. Taking into consideration the economic evaluation WCO is preferable as raw material for bio aviation fuel production due to its low cost and its contribution in environmental pollution abatement. Blend of 5% bio aviation with jet A-1 (by volume) can be used in the engine without any modifications and a successful test of blended aviation fuel with 10% bio aviation has been achieved on Jet-Cat 80/120 engine.
Publisher
Springer Science and Business Media LLC
Reference38 articles.
1. ASTM International (2015) ASTM D1655-15de1. Standard specification for aviation turbine fuel. https://doi.org/10.1520/D1655-15DE01
2. Bailis RE, Bake JE (2010) Greenhouse gas emissions and land use change from Jatropha–curcas based jet fuel in Brazil. Environ Sci Technol 44(22):8684–8691
3. Battiston S, Rigo C, Severo EDC, Mazutti MA, Kuhn RC, Gündel A, Foletto EL (2014) Synthesis of zinc aluminate (ZnAl2O4) spinel and its application as photocatalyst. Mater Res 17(3):734–738
4. Blakeley K (2012) DOD alternative fuels: policy, initiatives and legislative activity. Congressional Research Service
5. Bousdira K, Nouri L, Legrand J, Bafouloulou Y, Abismail M, Chekhar H, Babahani M (2014) A nove rview of the chemical composition of phoenicicol biomass fuel in Guerraraoasis. Revue des Energies Renouvel ables SIENR’14 Ghardaïa, pp 99–108
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献