Effect of nano-fluorapatite filler particles on surface microhardness and mineralization capacity of an experimental oral film

Author:

Zaki Dalia Y.ORCID,Safwat Engie M.ORCID,Salem Haidy N.ORCID,Nagi Shaymaa M.ORCID,Hamdy Tamer M.ORCID,Moharam Lamiaa M.ORCID,Hassan Mohammad L.ORCID,Sherief Marwa A.ORCID

Abstract

Abstract Background The objective of the study was to prepare and assess novel remineralizing oral films loaded with fluorapatite powder and composed of a combination of hydroxyethyl cellulose (HC) and cellulose nanofibers (CF). Methods Three concentrations of the prepared nano-fluorapatite were tried and tested after loading in the cellulose blends and films were prepared using solvent cast technique. Along with SEM, measurements of thickness of film, bending tolerance, time of disintegration, surface pH and release of ions were made. The produced film’s ability to remineralize demineralized teeth in vitro was investigated. Results The findings showed that the films’ thicknesses were uniform, their folding endurance exceeded 300, and their disintegration times exceeded 24 h. High amounts of fluoride and calcium ions were released, and nearly neutral pH values were observed. The distribution of fluorapatite powder particles was uniform, as demonstrated by SEM. The Vickers microhardness (VHN) of enamel and morphological analysis results showed that in comparison with the demineralized specimens, there was a substantial microhardness value increase following 15 and 30 days remineralization. Conclusions Newly developed prepared films are a successful method for remineralizing early-stage demineralized tooth lesions.

Funder

National Research Centre

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3