Exploring the neuroprotective effects of montelukast on brain inflammation and metabolism in a rat model of quinolinic acid-induced striatal neurotoxicity

Author:

Tassan Mazzocco Margherita,Murtaj Valentina,Martins Daniel,Schellino Roberta,Coliva Angela,Toninelli Elisa,Vercelli Alessandro,Turkheimer Federico,Belloli Sara,Moresco Rosa Maria

Abstract

Abstract Background One intrastriatal administration of quinolinic acid (QA) in rats induces a lesion with features resembling those observed in Huntington’s disease. Our aim is to evaluate the effects of the cysteinyl leukotriene receptor antagonist montelukast (MLK), which exhibited neuroprotection in different preclinical models of neurodegeneration, on QA-induced neuroinflammation and regional metabolic functions. Methods The right and left striatum of Sprague Dawley and athymic nude rats were injected with QA and vehicle (VEH), respectively. Starting from the day before QA injection, animals were treated with 1 or 10 mg/kg of MLK or VEH for 14 days. At 14 and 30 days post-lesion, animals were monitored with magnetic resonance imaging (MRI) and positron emission tomography (PET) using [18F]-VC701, a translocator protein (TSPO)-specific radiotracer. Striatal neuroinflammatory response was measured post-mortem in rats treated with 1 mg/kg of MLK by immunofluorescence. Rats treated with 10 mg/kg of MLK also underwent a [18F]-FDG PET study at baseline and 4 months after lesion. [18F]-FDG PET data were then used to assess metabolic connectivity between brain regions by applying a covariance analysis method. Results MLK treatment was not able to reduce the QA-induced increase in striatal TSPO PET signal and MRI lesion volume, where we only detected a trend towards reduction in animals treated with 10 mg/kg of MLK. Post-mortem immunofluorescence analysis revealed that MLK attenuated the increase in striatal markers of astrogliosis and activated microglia in the lesioned hemisphere. We also found a significant increase in a marker of anti-inflammatory activity (MannR) and a trend towards reduction in a marker of pro-inflammatory activity (iNOS) in the lesioned striatum of MLK—compared to VEH-treated rats. [18F]-FDG uptake was significantly reduced in the striatum and ipsilesional cortical regions of VEH-treated rats at 4 months after lesion. MLK administration preserved glucose metabolism in these cortical regions, but not in the striatum. Finally, MLK was able to counteract changes in metabolic connectivity and measures of network topology induced by QA, in both lesioned and non-lesioned hemispheres. Conclusions Overall, MLK treatment produced a significant neuroprotective effect by reducing neuroinflammation assessed by immunofluorescence and preserving regional brain metabolism and metabolic connectivity from QA-induced neurotoxicity in cortical and subcortical regions.

Funder

The Italian Ministry of Research and Education (MIUR) PRIN program

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3