Role of SPAK–NKCC1 signaling cascade in the choroid plexus blood–CSF barrier damage after stroke

Author:

Wang Jun,Liu Ruijia,Hasan Md Nabiul,Fischer Sydney,Chen Yang,Como Matt,Fiesler Victoria M.,Bhuiyan Mohammad Iqbal H.,Dong Shuying,Li Eric,Kahle Kristopher T.,Zhang Jinwei,Deng Xianming,Subramanya Arohan R.,Begum Gulnaz,Yin Yan,Sun Dandan

Abstract

Abstract Background The mechanisms underlying dysfunction of choroid plexus (ChP) blood–cerebrospinal fluid (CSF) barrier and lymphocyte invasion in neuroinflammatory responses to stroke are not well understood. In this study, we investigated whether stroke damaged the blood–CSF barrier integrity due to dysregulation of major ChP ion transport system, Na+–K+–Cl cotransporter 1 (NKCC1), and regulatory Ste20-related proline-alanine-rich kinase (SPAK). Methods Sham or ischemic stroke was induced in C57Bl/6J mice. Changes on the SPAK–NKCC1 complex and tight junction proteins (TJs) in the ChP were quantified by immunofluorescence staining and immunoblotting. Immune cell infiltration in the ChP was assessed by flow cytometry and immunostaining. Cultured ChP epithelium cells (CPECs) and cortical neurons were used to evaluate H2O2-mediated oxidative stress in stimulating the SPAK–NKCC1 complex and cellular damage. In vivo or in vitro pharmacological blockade of the ChP SPAK–NKCC1 cascade with SPAK inhibitor ZT-1a or NKCC1 inhibitor bumetanide were examined. Results Ischemic stroke stimulated activation of the CPECs apical membrane SPAK–NKCC1 complex, NF-κB, and MMP9, which was associated with loss of the blood–CSF barrier integrity and increased immune cell infiltration into the ChP. Oxidative stress directly activated the SPAK–NKCC1 pathway and resulted in apoptosis, neurodegeneration, and NKCC1-mediated ion influx. Pharmacological blockade of the SPAK–NKCC1 pathway protected the ChP barrier integrity, attenuated ChP immune cell infiltration or neuronal death. Conclusion Stroke-induced pathological stimulation of the SPAK–NKCC1 cascade caused CPECs damage and disruption of TJs at the blood–CSF barrier. The ChP SPAK–NKCC1 complex emerged as a therapeutic target for attenuating ChP dysfunction and lymphocyte invasion after stroke.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3