Author:
Liu Qiang,Sun Yi-Man,Huang Hui,Chen Chen,Wan Jie,Ma Lin-Hui,Sun Yin-Ying,Miao Hui-Hui,Wu Yu-Qing
Abstract
Abstract
Background
Postoperative cognitive dysfunction (POCD) is a very common complication that might increase the morbidity and mortality of elderly patients after surgery. However, the mechanism of POCD remains largely unknown. The NAD-dependent deacetylase protein Sirtuin 3 (SIRT3) is located in the mitochondria and regulates mitochondrial function. SIRT3 is the only sirtuin that specifically plays a role in extending lifespan in humans and is associated with neurodegenerative diseases. Therefore, the aim of this study was to evaluate the effect of SIRT3 on anesthesia/surgery-induced cognitive impairment in aged mice.
Methods
SIRT3 expression levels were decreased after surgery. For the interventional study, an adeno-associated virus (AAV)-SIRT3 vector or an empty vector was microinjected into hippocampal CA1 region before anesthesia/surgery. Western blotting, immunofluorescence staining, and enzyme-linked immune-sorbent assay (ELISA) were used to measure the oxidative stress response and downstream microglial activation and proinflammatory cytokines, and Golgi staining and long-term potentiation (LTP) recording were applied to evaluate synaptic plasticity.
Results
Overexpression of SIRT3 in the CA1 region attenuated anesthesia/surgery-induced learning and memory dysfunction as well as synaptic plasticity dysfunction and the oxidative stress response (superoxide dismutase [SOD] and malondialdehyde [MDA]) in aged mice with POCD. In addition, microglia activation (ionized calcium binding adapter molecule 1 [Iba1]) and neuroinflammatory cytokine levels (tumor necrosis factor-alpha [TNF-α], interleukin [IL]-1β and IL-6) were regulated after anesthesia/surgery in a SIRT3-dependent manner.
Conclusion
The results of the current study demonstrate that SIRT3 has a critical effect in the mechanism of POCD in aged mice by suppressing hippocampal neuroinflammation and reveal that SIRT3 may be a promising therapeutic and diagnostic target for POCD.
Funder
National Natural Science Foundation of China
Beijing Talents Fund
Natural Science Foundation of Jiangsu Province
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience
Cited by
99 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献