Inhibition of NUCB2 suppresses the proliferation, migration, and invasion of rheumatoid arthritis synovial fibroblasts from patients with rheumatoid arthritis in vitro

Author:

Zhang Shuo,Zhang Tao,Xu Yayun,Rong Genxiang,Jing Juehua

Abstract

AbstractRheumatoid arthritis (RA) is an autoimmune polyarthritis in which synovial fibroblasts (SF) play a major role in cartilage and bone destruction through tumorlike proliferation, migration, and invasion. Nesfatin-1, an 82-amino-acid-long peptide discovered by Oh-I in 2006, is derived from the precursor protein nucleobindin-2 (NUCB2). NUCB2/nesfatin-1 promotes cell proliferation, migration, and invasion in various tumors. We have previously shown that increased nesfatin-1 levels in the synovium may be associated with disease severity in patients with RA. However, the effect of NUCB2 on the tumorlike transformation of RASF has not yet been reported. The expression of NUCB2 mRNA in the synovium of RA and non-RA patients was further confirmed using three individual datasets from the NCBI GEO database. Gene set enrichment analysis (GSEA) was employed to explore the association between NUCB2 mRNA and RA-related gene signatures or signaling pathways in the GSE77298 dataset. Cell proliferation, migration, and invasion abilities were determined using Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), wound healing, and transwell assays, respectively. The results showed that the levels of NUCB2 mRNA in the synovium were significantly elevated in patients with RA. Moreover, GSEA showed that high expression of NUCB2 mRNA was related to gene signatures, including those involved in the cell cycle, DNA replication, extracellular matrix–receptor interaction, and focal adhesion. Furthermore, the results of CCK-8 and EdU assays indicated that inhibition of NUCB2 markedly repressed RASF proliferation. Additionally, the results of wound healing and transwell assays demonstrated that inhibition of NUCB2 significantly suppressed the migratory and invasive abilities of RASFs. Our findings are the first to demonstrate that the inhibition of NUCB2 suppresses the proliferation, migration, and invasion of RASFs in vitro.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3