Ferroptosis-related lncRNAs guiding osteosarcoma prognosis and immune microenvironment

Author:

Yang Mingyi,Su Yani,Xu Ke,Zheng Haishi,Yuan Qiling,Cai Yongsong,Aihaiti Yirixiati,Xu Peng

Abstract

Abstract Objective To investigate the ferroptosis-related long non-coding RNAs (FRLncs) implicated in influencing the prognostic and immune microenvironment in osteosarcoma (OS), and to establish a foundational framework for informing clinical decision making pertaining to OS management. Methods Transcriptome data and clinical data pertaining to 86 cases of OS, the GSE19276, GSE16088 and GSE33382 datasets, and a list of ferroptosis-related genes (FRGs) were used to establish a risk prognostic model through comprehensive analysis. The identification of OS-related differentially expressed FRGs was achieved through an integrated analysis encompassing the aforementioned 86 OS transcriptome data and the GSE19276, GSE16088 and GSE33382 datasets. Concurrently, OS-related FRLncs were ascertained via co-expression analysis. To establish a risk prognostic model for OS, Univariate Cox regression analysis and Lasso Cox regression analysis were employed. Subsequently, a comprehensive evaluation was conducted, comprising risk curve analysis, survival analysis, receiver operating characteristic curve analysis and independent prognosis analysis. Model validation with distinct clinical subgroups was performed to assess the applicability of the risk prognostic model to diverse patient categories. Moreover, single sample gene set enrichment analysis (ssGSEA) was conducted to investigate variations in immune cell populations and immune functions within the context of the risk prognostic model. Furthermore, an analysis of immune checkpoint differentials yielded insights into immune checkpoint-related genes linked to OS prognosis. Finally, the risk prognosis model was verified by dividing the samples into train group and test group. Results We identified a set of seven FRLncs that exhibit potential as prognostic markers and influence factors of the immune microenvironment in the context of OS. This ensemble encompasses three high-risk FRLncs, denoted as APTR, AC105914.2 and AL139246.5, alongside four low-risk FRLncs, designated as DSCR8, LOH12CR2, AC027307.2 and AC025048.2. Furthermore, our analysis revealed notable down-regulation in the high-risk group across four distinct immune cell types, namely neutrophils, natural killer cells, plasmacytoid dendritic cells and tumor-infiltrating lymphocytes. This down-regulation was also reflected in four key immune functions, antigen-presenting cell (APC)-co-stimulation, checkpoint, cytolytic activity and T cell co-inhibition. Additionally, we identified seven immune checkpoint-associated genes with significant implications for OS prognosis, including CD200R1, HAVCR2, LGALS9, CD27, LAIR1, LAG3 and TNFSF4. Conclusion The findings of this study have identified FRLncs capable of influencing OS prognosis and immune microenvironment, as well as immune checkpoint-related genes that are linked to OS prognosis. These discoveries establish a substantive foundation for further investigations into OS survival and offer valuable insights for informing clinical decision making in this context.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3