Biomechanical investigation of the hybrid lumbar fixation technique with traditional and cortical bone trajectories in transforaminal lumbar interbody fusion: finite element analysis

Author:

Huang Ying,Maimaiti Abulikemu,Tian Yiming,Li Zhengrong,Kahaer Alafate,Rexiti Paerhati

Abstract

Abstract Objective To compare the biomechanical performance of the hybrid lumbar fixation technique with the traditional and cortical bone trajectory techniques using the finite element method. Methods Four adult wet lumbar spine specimens were provided by the Department of Anatomy and Research of Xinjiang Medical University, and four L1–S1 lumbar spine with transforaminal lumbar interbody fusion (TLIF) models at L4–L5 segment and four different fixation techniques were established: bilateral traditional trajectory screw fixation (TT–TT), bilateral cortical bone trajectory screw fixation (CBT–CBT), hybrid CBT–TT (CBT screws at L4 and TT screws at L5) and TT–CBT (TT screws at L4 and CBT screws at L5). The range of motion (ROM) of the L4–L5 segment, von Mises stress of cage, internal fixation, and rod were compared in flexion, extension, left and right bending, and left and right rotation. Results Compared with the TT–TT group, the TT–CBT group exhibited lower ROM of L4–L5 segment, especially in left-sided bending; the CBT–TT group had the lowest ROM of L4–L5 segment in flexion and extension among the four fixation methods. Compared with the CBT–CBT group, the peak cage stress in the TT–CBT group was reduced by 9.9%, 18.1%, 21.5%, 23.3%, and 26.1% in flexion, left bending, right bending, left rotation, and right rotation conditions, respectively, but not statistically significant (P > 0.05). The peak stress of the internal fixation system in the TT–CBT group was significantly lower than the other three fixation methods in all five conditions except for extension, with a statistically significant difference between the CBT–TT and TT–CBT groups in the left rotation condition (P = 0.017). In addition, compared with the CBT–CBT group, the peak stress of the rod in the CBT–TT group decreased by 34.8%, 32.1%, 28.2%, 29.3%, and 43.0% under the six working conditions of flexion, extension, left bending, left rotation, and right rotation, respectively, but not statistically significant (P > 0.05). Conclusions Compared with the TT–TT and CBT–CBT fixation methods in TLIF, the hybrid lumbar fixation CBT–TT and TT–CBT techniques increase the biomechanical stability of the internal fixation structure of the lumbar fusion segment to a certain extent and provide a corresponding theoretical basis for further development in the clinic.

Funder

Xinjiang Medical University Entrepreneurship Training Program for College Students

Natural Science Foundation of Xinjiang Uygur Autonomous Region, Science Foundation for Distinguished Young Scholars

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3