Down-regulation of long noncoding RNA HULC inhibits the inflammatory response in ankylosing spondylitis by reducing miR-556-5p-mediated YAP1 expression

Author:

Yi LuLu,Song ChangJun,Liu YuanYuan,Li DongSheng,Xiao TianTian,Guo XuQin,Wu YiCai

Abstract

Abstract Objective Ankylosing spondylitis (AS) is a progressive systemic disease characterized by a chronic inflammatory response in the sacroiliac joints and spine. Long noncoding RNAs suggest significant actions in the progression of AS. Therefore, a specific lncRNA, highly upregulated in liver cancer (HULC), was studied here regarding its functions and related mechanisms in AS. Methods Measurements of miR-556-5p, HULC, and YAP1 expression were performed on AS cartilage tissues and chondrocytes. The interaction between miR-556-5p and HULC or YAP1 was verified. CCK-8, flow cytometry and enzyme-linked immunosorbent assay were used to evaluate the effects of HULC, miR-556-5p, and YAP1 on the proliferation, apoptosis, and inflammatory response of AS chondrocytes. Furthermore, the action of HULC/miR-556-5p/YAP1 was experimentally observed in AS mice. Results HULC and YAP1 levels were augmented, while miR-556-5p levels were suppressed in AS cartilage tissues and chondrocytes. Downregulating HULC or upregulating miR-556-5p stimulated chondrocyte proliferation and inhibited apoptosis and inflammation in AS. miR-556-5p was a downstream factor of HULC, and YAP1 was a potential target of miR-556-5p. The improvement effect of downregulated HULC on AS chondrocytes was saved when YAP1 expression was forced. In addition, silence of HULC improved the pathological injury of spinal cartilage in AS mice by enhancing miR-556-5p-related regulation of YAP1. Conclusion HULC inhibition relieves the inflammatory response in AS by reducing miR-556-5p-mediated YAP1 expression.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3