Osteonectin bidirectionally regulates osteoblast mineralization

Author:

Zhu Yun‑Sen,Mo Ting‑Ting,Jiang Chang,Zhang Jiang‑Nan

Abstract

Abstract Objective The aim of this study was to investigate whether Osteonectin/Secreted protein acidic and rich in cysteine (ON/SPARC) had a two-way dose-dependent regulatory effect on osteoblast mineralization and its molecular mechanism. Methods Initially, different concentrations of ON were added in osteoblasts, and the gene of bone sialoprotein (BSP), osteocalcin (OCN), osteopontin (OPN) and alkaline phosphatase (ALP) were detected using reverse‐transcription quantitative polymerase chain reaction (RT‐PCR). Secondly, based on the above results, the Optima and inhibitory concentration of ON for osteoblast mineralization were determined and regrouped, the Control group was also set up, and the gene detections of Collagen 1 (Col 1), Discoidin domain receptor 2 (DDR2) and p38 mitogen‑activated protein kinase were added using RT‐PCR. In the third stage of the experiment, osteoblasts were pretreated with 0.4Mm ethyl-3,4-dihydroxybenzoate (DHB) (a specific inhibitor of collagen synthesis) for 3 h before adding the optima SPARC, the gene and protein expressions of OCN, OPN, BSP, ALP, DDR2, ALP, Col 1, DDR2 and P38 were detected by RT‑qPCR and western blot analysis, and the mineralized nodules were observed by alizarin red staining. Results The results showed that the expression of OCN, OPN, BSP, ALP, DDR2, ALP, Col 1, DDR2 and P38 genes and proteins in osteoblasts were significantly enhanced by 1 ug/ml ON, 100 ug/ml ON or 1 ug/ml ON added with 3,4 DHB significantly inhibited the expressions of DDR2, P38 and the above-mentioned mineralization indexes, and significantly reduced the formation of mineralized nodules. Conclusion This study suggested that ON had a bidirectional dose-dependent regulatory effect on osteoblast mineralization, and the activation of P38 pathway by collagen binding to DDR2 was also an important molecular mechanism.

Funder

Taizhou Science and Technology Project

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3