Enhancing acetabular reaming accuracy: optimal techniques and a novel reamer design

Author:

Karia Monil,Boughton Oliver,Mohan Sceyon Vishnu,Halewood Camilla,Wozencroft Rob,Clarke Susannah,Cobb Justin

Abstract

Abstract Introduction Successful press-fit implantation relies on an accurately reamed bone cavity. Inaccurate reaming can lead to a suboptimal press-fit risking fracture and cup deformation or excessive micromotion and loosening. Several factors may impact reaming accuracy including the reamer design, the surgeon’s technique and the bone quality. The aim of this study is to investigate the accuracy of reaming techniques and the accuracy of a novel reamer design. Methods Eighty composite bone models, half high density and half low density, were reamed with either a conventional or an additively manufactured reamer with a novel design employing either a straight or ‘whirlwind’ reaming technique. Reamed cavities were scanned using a 3D laser scanner and the median difference between achieved and expected diameters compared. Results The novel reamer design was more accurate than the unused conventional reamer, using both whirlwind (0.1 mm (IQR 0–0.2) vs. 0.3 mm (IQR 0.3–0.4); p < 0.001) and straight techniques (0.3 mm (IQR 0.1–1.0) vs. 1.2 mm (IQR 1–1.6); p = 0.001). Whirlwind reaming was more accurate than straight reaming using both conventional (0.3 mm (IQR 0.3–0.4) vs. 1.2 mm (IQR 1–1.6); p < 0.0001) and single use reamers (0.1 mm (IQR 0–0.2) vs. 0.3 mm (IQR 0.1–1.0); p = 0.007). Reaming errors were higher in low-density bone compared to high-density bone, for both reamer types and reaming techniques tested (0.6 mm (IQR 0.3–1.5) vs. 0.3 mm (IQR 0.1–0.8); p = 0.005). Conclusion We present a novel reamer design that demonstrates superior accuracy to conventional reamers in achieving the desired reaming diameter. Improved reaming accuracy was also demonstrated using both devices and in both bone models, using a ‘whirlwind’ technique. We recommend the use of this novel reamer design employing a ‘whirlwind’ technique to optimize reaming accuracy. Particular attention should be paid toward patients with lower bone quality which may be more susceptible to higher inaccuracies.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3