Comparison of the effectiveness of different machine learning algorithms in predicting new fractures after PKP for osteoporotic vertebral compression fractures

Author:

Ma Yiming,Lu Qi,Yuan Feng,Chen Hongliang

Abstract

Abstract Background The use of machine learning has the potential to estimate the probability of a second classification event more accurately than traditional statistical methods, and few previous studies on predicting new fractures after osteoporotic vertebral compression fractures (OVCFs) have focussed on this point. The aim of this study was to explore whether several different machine learning models could produce better predictions than logistic regression models and to select an optimal model. Methods A retrospective analysis of 529 patients who underwent percutaneous kyphoplasty (PKP) for OVCFs at our institution between June 2017 and June 2020 was performed. The patient data were used to create machine learning (including decision trees (DT), random forests (RF), support vector machines (SVM), gradient boosting machines (GBM), neural networks (NNET), and regularized discriminant analysis (RDA)) and logistic regression models (LR) to estimate the probability of new fractures occurring after surgery. The dataset was divided into a training set (75%) and a test set (25%), and machine learning models were built in the training set after ten cross-validations, after which each model was evaluated in the test set, and model performance was assessed by comparing the area under the curve (AUC) of each model. Results Among the six machine learning algorithms, except that the AUC of DT [0.775 (95% CI 0.728–0.822)] was lower than that of LR [0.831 (95% CI 0.783–0.878)], RA [0.953 (95% CI 0.927–0.980)], GBM [0.941 (95% CI 0.911–0.971)], SVM [0.869 (95% CI 0.827–0.910), NNET [0.869 (95% CI 0.826–0.912)], and RDA [0.890 (95% CI 0.851–0.929)] were all better than LR. Conclusions For prediction of the probability of new fracture after PKP, machine learning algorithms outperformed logistic regression, with random forest having the strongest predictive power. Graphical Abstract

Funder

the Natural Science Foundation of Jiangsu Science and Technology Department of Jiangsu Province

the Medical Research Project of Jiangsu Provincial Health Commission

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3