Exploring the role and mechanism of Fuzi decoction in the treatment of osteoporosis by integrating network pharmacology and experimental verification

Author:

Li Fudong,Guo Chuan,Zhang Shikai,Zheng Bing,Sun Kaiqiang,Shi Jiangang

Abstract

Abstract Background Fuzi decoction (FZD), a traditional Chinese medicine formula, was used to treat musculoskeletal diseases by warming channels, strengthening yang and dispelling pathogenic cold and dampness. In clinical practice, FZD has been used to treat rheumatoid arthritis and osteoarthritis. It alleviated osteoarticular disorders through ameliorating the degradation of cartilage and improving meniscal damage in osteoarthritis, while its roles and mechanisms in the treatment of bone loss diseases remain unclear. This study aims to investigate the underlying mechanisms of FZD in treating osteoporosis using an integrative method of network pharmacology and experimental study. Methods In this study, network pharmacology was used to predict the core targets and potential pathways of the bioactive ingredients of FZD to attenuate osteoporosis. Molecular docking was performed to evaluate the interactions between core compounds and key targets. In addition, both cell and animal experiments were carried out to validate the role and potential mechanism in treating osteoporosis. Results In the present study, data revealed that kaempferol, beta-sitosterol, stigmasterol, fumarine, and (+)-catechin may be the primary bioactive ingredients of FZD in the treatment of osteoporosis, which were closely associated with the osteoporosis-related targets. And the KEGG results indicated that the NF-κB pathway was closely associated with the function of FZD in treating osteoporosis. In addition, in vivo demonstrated that FZD ameliorated osteoporosis. In vitro experiments showed that the pro-apoptotic factors indicators including CASP3 and BAX were decreased by FZD and the anti-apoptotic factor BCL2 was increased by FZD. In addition, FZD significantly suppressed the osteoclast differentiation in culture and the expression levels of osteoclast-related genes including TRAF6, CTSK, and MMP9. And the NF-κB pathway was confirmed, via in vitro experiment, to be involved in osteoclast differentiation. Conclusions This study demonstrated that FZD played a pivotal role in suppressing the osteoclast differentiation via regulating the NF-κB pathway, indicating that FZD could be a promising antiosteoporosis drug and deserve further investigation.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3