The mechanism by which Naru 3 pill protects against intervertebral disc cartilage endplate degeneration based on network pharmacology and experimental verification

Author:

Guo Jialin,Xue Jianmin,He Zhiwei,Jia Haiyu,Yang Xuejun

Abstract

Abstract Context Naru 3 pill is a traditional Mongolian medicine for the treatment of intervertebral disc degeneration (IDD), but the mechanism is not yet clear. Objective This study investigated the mechanism of Naru 3 pill in the treatment of IDD. Materials and methods Active ingredients and related targets of Naru 3 pill, as well as IDD-related genes, were collected from public databases. The analysis was performed by protein‒protein interaction network analysis, gene ontology and Kyoto Gene and Genome Encyclopedia (KEGG) functional enrichment analysis, molecular docking and molecular dynamics simulations. Finally, the network pharmacology results were validated by in vitro experiments. Results Network analysis showed that sesamin, piperine and ellagic acid were potential key components and CASP3, BAX and BCL2 were key targets. KEGG analysis indicated the apoptotic pathway as a potential pathway. Molecular docking showed that sesamin interacted better with the targets than the other components. The results of molecular dynamics simulations indicated that the three systems BAX-sesamin, BCL2-sesamin and CASP3-sesamin were stable and reasonable during the simulation. In vitro experiments showed that sesamin had the least effect on cell growth and the most pronounced proliferation-promoting effect, and so sesamin was considered the key component. The experiments confirmed that sesamin had antiapoptotic effects and reversed the expression of CASP3, BAX and BCL2 in degeneration models, which was consistent with the network pharmacology results. Furthermore, sesamin alleviated extracellular matrix (ECM) degeneration and promoted cell proliferation in the IDD model. Conclusion The present study suggested that Naru 3 pill might exert its therapeutic and antiapoptotic effects on IDD by delaying ECM degradation and promoting cell proliferation, which provides a new strategy for the treatment of IDD.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3