Exosomal miR-331-3p derived from chemoresistant osteosarcoma cells induces chemoresistance through autophagy

Author:

Meng Chenyang,Yang Yun,Feng Wei,Ma Penglei,Bai Rui

Abstract

Abstract Background Osteosarcoma is a common malignant bone tumor, and chemotherapy can effectively improve the prognosis. MicroRNA-331 (MiR-331) is associated with poor cancer outcomes. However, the role of miR-331 in osteosarcoma remains to be explored. Methods Drug-resistant osteosarcoma cells were cultured, and their exosomes were purified. The secretion and uptake of exosomes by drug-resistant osteosarcoma and osteosarcoma cells were confirmed using a fluorescence tracking assay and Transwell experiments. The effects of drug-resistant exosomes on cell proliferation were determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. siRNA-Drosha and neutral sphingomyelinase inhibitor GW4869 were used to determine the transfer of miRNAs. qRT-PCR and western blotting were used to detect the role of autophagy in the regulation of drug-resistant cell-derived exosomal miR-331-3p. Results Exosomal miR-331-3p levels in drug-resistant cells were higher than in exosomes from osteosarcoma cells. The exosomes secreted by the drug-resistant osteosarcoma cells could be absorbed by osteosarcoma cells, leading to acquired drug resistance in previously non-resistance cells. Inhibition of miRNAs resulted in reduced transmission of drug resistance transmission by exosomes. Exosomes from drug-resistant osteosarcoma cells transfected with siRNA-Drosha or treated by GW4869 could not enhance the proliferation of MG63 and HOS cells. Finally, miR-331-3p in the exosomes secreted by drug-resistant osteosarcoma cells could induce autophagy of osteosarcoma cells, allowing them to acquire drug resistance. The inhibition of miR-331-3p decreased drug resistance of osteosarcoma cells. Conclusion Exosomes secreted from chemoresistant osteosarcoma cells promote drug resistance through miR-331-3p and autophagy. Inhibition of miR-331-3p could be used to alleviate drug resistance in osteosarcoma.

Funder

Natural Science Foundation of Inner Mongolia Autonomous Region

Natural Science Foundation of Inner Mongolia Medical University

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

Reference43 articles.

1. Ottaviani G, Jaffe N. The epidemiology of osteosarcoma. Cancer Treat Res. 2009;152:3–13.

2. Moore DD, Luu HH. Osteosarcoma. Cancer Treat Res. 2014;162:65–92.

3. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines). Bone Cancer. Version 2.2023. Fort Washington: National Comprehensive Cancer Network; 2022.

4. Group ESESNW. Bone sarcomas: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014;25(1):113–23.

5. Kager L, Tamamyan G, Bielack S. Novel insights and therapeutic interventions for pediatric osteosarcoma. Future Oncol (London, England). 2017;13(4):357–68.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3