Biomechanical research of medial femoral circumflex vascularized bone-grafting in the treatment of early-to-mid osteonecrosis of the femoral head: a finite element analysis

Author:

Zhang Yingkai,Wang Xinyuan,Jiang Chang,Hua Bingxuan,Yan Zuoqin

Abstract

Abstract Purpose Hip preservation therapy of early ONFH (Osteonecrosis of the femoral head) has emerged as one of the hot areas of research. We have optimized the procedure of traditional MFCVBG (medial femoral circumflex vascularized bone grafting) by using specialized surgical tools and used the finite element analysis to guide the implantation position of the bone flap during surgery and validate the biological mechanical stability of the modified MFCVBG. Methods This study was based on the data of a male patient with left hip (ARCO stage IIB, JIC type C) hormonal ONFH. Harris score (HHS), anteroposterior and lateral hip radiographs, frog position hip radiographs and SPECT/CT of femoral head flow imaging were performed postoperatively to evaluate clinical efficacy. The patient’s CT data were used to establish upper femur finite element model of the normal group, osteonecrosis group and postoperative group, respectively. The force on the femoral structure of each group was analyzed under four different loads in the gait cycle of 0.5 times the body weight (0.5 G, standing on two feet), 2.75 G (standing on one foot), 4 G (walking with the middle foot on the ground) and 7 G (walking with the toe off the ground) to validate the biological mechanical stability of the modified MFCVBG, predict femoral head collapse risk, simulate of the different healing conditions of postoperative bone flap, and analyze the postoperative effect of non-ideal surgical model. Results According to the follow-up results, the bone flap and the inner wall of decompression channel healed well, no osteonecrosis progression, no local collapse or micro-fracture occurred in the femoral head, and the articular surface was intact and the necrosis was well repaired. According to the result of the finite element analysis, compared with the osteonecrosis group, the overall stress and displacement peak of the upper femur and the cortical bone stress peak of the femoral head in the postoperative group and normal group were significantly reducing; modified MFCVBG can significantly improve the biomechanical stability of necrotic femoral head and reduce the risk of femoral head collapse; there was no obvious abnormal stress distribution in the greater trochanter and intertrochanter region after the flap was removed; the bone flap of the complete removal of necrotic focus + long bone flap group was directly placed at the bottom of the decompression passage, and the bone flap cortical bone can provide substantial mechanical support; in theory, patients can try to reduce the load with crutches or walking aids and carry out appropriate flat activities to effectively promote the early postoperative recovery. Conclusions The modified MFCVBG resulted in good efficacy, safety and feasibility. The necrotic focus should be completely removed during the operation, and the long bone flap should be placed directly under the subchondral bone. For patients with better bone healing ability, a more positive attitude can be taken to promote early postoperative weight-bearing.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3