Ginsenoside Rg1 inhibits nucleus pulposus cell apoptosis, inflammation and extracellular matrix degradation via the YAP1/TAZ pathway in rats with intervertebral disc degeneration

Author:

Yang Yong-hua,Gu Xiao-peng,Hu Hong,Hu Bin,Wan Xiang-lian,Gu Zhi-ping,Zhong Shao-jin

Abstract

Abstract Purpose Intervertebral disc degeneration (IDD) is one of the main causes of low back pain, which not only affects patients’ life quality, but also places a great burden on the public health system. Recently, ginsenoside Rg1 has been found to act in IDD; however, the mechanism is still unclear. The purpose of this study is to explore the function of ginsenoside Rg1 and its molecular mechanism in IDD. Methods The rat model of IDD and nucleus pulposus (NP) experimental groups treated with ginsenoside Rg1 was constructed for investing the role of ginsenoside Rg1 in IDD rats. In the in vitro and in vivo study, the histological morphological changes, motor threshold (MT), inflammatory factors, oxidative stress, apoptosis and expression of the YAP1/TAZ signaling pathway-related proteins of the intervertebral discs (IVD) were measured by histological staining, mechanical and thermal stimulation, ELISA, qRT-PCR, flow cytometry, and western blot, respectively. Results Ginsenoside Rg1 significantly increased the threshold for mechanical and thermal stimulation and alleviated histological changes in IDD rats. Ginsenoside Rg1 had a significant inhibitory effect on the secretion level of inflammatory factors, redox activity, extracellular matrix (ECM) degradation in IVD tissue and NP cells, and apoptosis in NP cells. Further investigation revealed that ginsenoside Rg1 significantly inhibited the expression of YAP1/TAZ signaling pathway-related proteins. Additionally, the above inhibitory effect of ginsenoside Rg1 on IDD progression was concentration-dependent, that is, the highest concentration of ginsenoside Rg1 was most effective. Conclusion Ginsenoside Rg1 inhibits IDD progression by suppressing the activation of YAP1/TAZ signaling pathway. This means that ginsenoside Rg1 has the potential to treat IDD.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3