Biomechanical differences between two different shapes of oblique lumbar interbody fusion cages on whether to add posterior internal fixation system: a finite element analysis

Author:

Liu Jianchao,Geng Ziming,Wang Jian,Zhang Zepei,Zhang Xingze,Miao Jun

Abstract

Abstract Background Oblique lateral lumbar fusion (OLIF) is widely used in spinal degeneration, deformity and other diseases. The purpose of this study was to investigate the biomechanical differences between two different shapes of OLIF cages on whether to add posterior internal fixation system, using finite element analysis. Methods A complete three-dimensional finite element model is established and verified for L3–L5. Surgical simulation was performed on the verified model, and the L4–L5 was the surgical segment. A total of the stand-alone group (Model A1, Model B1) and the BPSF group (Model A2, Model B2) were constructed. The four OLIF surgical models were: A1. Stand-alone OLIF with a kidney-shaped Cage; B1. Stand-alone OLIF with a straight cage; A2. OLIF with a kidney-shaped cage + BPSF; B2. Stand-alone OLIF with a straight cage + BPSF, respectively. The differences in the range of motion of the surgical segment (ROM), equivalent stress peak of the cage (ESPC), the maximum equivalent stress of the endplate (MESE) and the maximum stress of the internal fixation (MSIF) were compared between different models. Results All OLIF surgical models showed that ROM declines between 74.87 and 96.77% at L4–L5 operative levels. The decreasing order of ROM was Model A2 > Model B2 > Model A1 > Model A2. In addition, the ESPC and MESE of Model A2 are smaller than those of other OLIF models. Except for the left-bending position, the MSIF of Model B2 increased by 1.51–16.69% compared with Model A2 in each position. The maximum value of MESE was 124.4 Mpa for Model B1 in the backward extension position, and the minimum value was 7.91 Mpa for Model A2 in the right rotation. Stand-alone group showed significantly higher ROMs and ESPCs than the BPSF group, with maximum values of 66.66% and 70.59%. For MESE, the BPSF group model can be reduced by 89.88% compared to the stand-alone group model. Conclusions Compared with the traditional straight OLIF cage, the kidney-shaped OLIF cage can further improve the stability of the surgical segment, reduce ESPC, MESE and MSIF, and help to reduce the risk of cage subsidence.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3