The BMP signaling pathway enhances the osteoblastic differentiation of bone marrow mesenchymal stem cells in rats with osteoporosis

Author:

Zhao Bin,Xing Gengyan,Wang Aiyuan

Abstract

Abstract Background This study was conducted with the aim of exploring the effect of the BMP signaling pathway on osteoblastic differentiation in rat bone marrow mesenchymal stem cells (rBMSCs) in rats with osteoporosis (OP). Methods The bilateral ovaries of female SD rats were resected for the establishment of a rat OP model. The osteoblastic differentiation of isolated rBMSCs was identified through osteogenic induction. Adipogenetic induction and flow cytometry (FCM) were used to detect adipogenic differentiation and the expression of rBMSC surface markers. The rBMSCs were grouped into the blank group, NC group, si-BMP2 group, and oe-BMP2 group. The expression levels of key factors and osteogenesis-related factors were determined by Western blot and quantitative real-time polymerase chain reaction (qRT-PCR). The formation of calcified nodules was observed by alizarin red staining. ALP activity was measured by alkaline phosphatase staining. Results The rats with OP had greater weight but decreased bone mineral density (BMD) than normal rats (all P < 0.01). The rBMSCs from rats with OP were capable of osteoblastic differentiation and adipogenic differentiation and showed high expression of CD44 (91.3 ± 2.9%) and CD105 (94.8 ± 2.1%). Compared with the blank group, the oe-BMP2 group had elevated BMP-2 and Smad1 levels and an increase in calcified nodules and ALP-positive staining areas (all P < 0.05). Moreover, the expression levels of Runx2, OC, and OPN in the oe-BMP2 group were relatively higher than those in the blank group (all P < 0.05). The findings in the si-BMP2 group were opposite to those in the oe-BMP2 group. Conclusion BMP signaling pathways activated by BMP-2 can promote the osteoblastic differentiation of rBMSCs from rats with OP.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3