Air quality and health impacts of the 2020 wildfires in California

Author:

Carreras-Sospedra MarcORCID,Zhu Shupeng,MacKinnon Michael,Lassman William,Mirocha Jeffrey D.,Barbato Michele,Dabdub Donald

Abstract

Abstract Background Wildfires in 2020 ravaged California to set the annual record of area burned to date. Clusters of wildfires in Northern California surrounded the Bay Area covering the skies with smoke and raising the air pollutant concentrations to hazardous levels. This study uses the Fire Inventory from the National Center for Atmospheric Research database and the Community Multiscale Air Quality model to estimate the effects of wildfire emissions on air quality during the period from August 16 to October 28 of 2020. In addition, low-cost sensor data for fine particulate matter (PM2.5) from the PurpleAir network is used to enhance modeled PM2.5 concentrations. The resulting impacts on ozone and PM2.5 are used to quantify the health impacts caused by wildfires using the Benefits Mapping and Analysis Program – Community Edition. Results Wildfire activity significantly increased direct PM2.5 emissions and emissions of PM2.5 and ozone precursors. Direct PM2.5 emissions surged up to 38 times compared to an average day. Modeling results indicated that wildfires alone led to a rise in ozone daily maximum 8-h average by up to 10 ppb and exceeded PM2.5 air quality standards in numerous locations by up to 10 times. While modeled PM2.5 concentrations were lower than measurements, correcting these with PurpleAir data improved the accuracy. The correction using PurpleAir data increased estimates of wildfire-induced mortality due to PM2.5 exposure by up to 16%. Conclusions The increased hospital admissions and premature mortality attributed to wildfires were found to be comparable to the health impacts avoided by strategies aimed at meeting ozone and PM2.5 air quality standards. This suggests that widespread wildfire emissions can negate years of efforts dedicated to controlling air pollution. The integration of low-cost sensor data proved invaluable in refining the estimates of health impacts from PM2.5 resulting from wildfires.

Funder

Office of the President, University of California

Electric Power Research Institute

U.S. Department of Energy

Publisher

Springer Science and Business Media LLC

Subject

Environmental Science (miscellaneous),Ecology, Evolution, Behavior and Systematics,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3