Vegetation’s influence on fire behavior goes beyond just being fuel

Author:

Loudermilk E. LouiseORCID,O’Brien Joseph J.,Goodrick Scott L.,Linn Rodman R.,Skowronski Nicholas S.,Hiers J. Kevin

Abstract

Abstract Background The structure and function of fire-prone ecosystems are influenced by many interacting processes that develop over varying time scales. Fire creates both instantaneous and long-term changes in vegetation (defined as live, dead, and decomposing plant material) through combustion, heat transfer to living tissues, and subsequent patterns of recovery. While fuel available for combustion may be relative to the amount of vegetation, it is equally instructive to evaluate how the physical structure and other characteristics of vegetation influence fire dynamics, and how these interactions change between fire events. This paper presents a conceptual framework for how vegetation not only embodies the legacy of previous fires but creates the physical environment that drives fire behavior beyond its combustion as a fuel source. Results While many environmental factors affect both the post-fire vegetation trajectory and fire dynamics themselves, we present a conceptual framework describing how vegetation’s structural characteristics control the local microclimate and fluid dynamics of fire-induced flows, and how that is influenced by ecosystem and atmospheric processes. Shifting our focus from fuels to vegetation allows us to integrate spatial and temporal feedbacks between fire, vegetation, soil, and the atmosphere across scales. This approach synthesizes the combustion and flammability science, the physical influence on fire behavior, and the ecosystem dynamics and processes that occur between fires and within a fire regime. Conclusions We conclude that fire behavior, including its prediction and ecological effects, should be broadened to include the dynamic processes that interact with vegetation, beyond its role as fuel. Our conceptual framework illustrates the crucial feedbacks across scales that link the finer details of vegetation and fire behavior processes that occur within a fire and have additive effects that feedback into the coarser scale processes and functions within an ecosystem. Shifting the fuels paradigm to integrate the combustion, physical, and ecological roles of vegetation as complex drivers of fire behavior and outcomes will broaden discovery within wildland fire science and ecology.

Funder

Strategic Environmental Research and Development Program

Environmental Security Technology Certification Program

Publisher

Springer Science and Business Media LLC

Subject

Environmental Science (miscellaneous),Ecology, Evolution, Behavior and Systematics,Forestry

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3