Spatial and temporal patterns and driving factors of forest fires based on an optimal parameter-based geographic detector in the Panxi region, Southwest China

Author:

Liu JiaORCID,Wang Yukuan,Guo Haiyan,Lu Yafeng,Xu Yuanxin,Sun Yu,Gan Weiwei,Sun Rui,Li Zhengyang

Abstract

Abstract Background The Panxi region in China is among the areas that are most severely impacted by forest fires. Despite this, there is currently a lack of comprehensive and systematic research on the spatial and temporal distribution patterns, as well as the drivers, of forest fires in the region. To reveal bio-geo-climatic and anthropogenic influences, this study investigated the temporal and spatial characteristics of forest fires and migration patterns of the center of gravity of forest fires in Panxi. A parametric optimal geographical detection model was utilized to quantify the influence of various individual factors and their combinations on the spatial patterns of forest fire occurrence in the whole Panxi region and sub-region, by analyzing the forest fire dataset from 2004 to 2020. Results From 2004 to 2020, the Panxi region experienced an upward trend in the number of forest fires and the area burned. However, the trends were not consistent over the entire period. Between 2004 and 2014, both the number of fires and the area burned showed fluctuations and an overall increase. In contrast, between 2015 and 2020, there was a significant decrease in the number of fires, while the area burned showed a continued upward trend. The study identified abrupt changes in the frequency of forest fires and burned areas, primarily in 2007 and 2016. Spatially, forest fires in Panxi exhibited a positive correlation and local clustering. The river valley basin and hilly regions displayed a higher incidence of forest fires, which were concentrated mainly along the hill edges. In the whole area of Panxi, climatic factors have a predominant influence on forest fire occurrences. Specifically, evaporation, maximum temperature, average temperature, number of days without rain, and minimum temperature demonstrated the strongest explanatory power. Furthermore, this relationship was found to be reinforced when combined with topographical, human activities, and vegetation factors. The spatial variation of drought within each sub-district has a stronger explanatory power for the distribution characteristics of forest fires in the region than at the Panxi-wide scale. The factor with the maximum interaction in most regions was the dual factor of rainfall and drought. Conclusions The study’s findings validate the applicability of geographic probes for identifying the drivers of fire occurrence and enhance our understanding of the drivers and their combined effects on the spatial context of the fire-incident study area.

Funder

Young Scientists Fund

Innovation and Development Special Project of the China Meteorological Administration

Development Project of Plateau Atmosphere and Environment Key Laboratory of Sichuan Province

Key Laboratory of Heavy Rain and Drought-Flood Disasters in Plateau and Basins of Sichuan Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3