Fire interval and post-fire climate effects on serotinous forest resilience

Author:

Agne Michelle C.ORCID,Fontaine Joseph B.ORCID,Enright Neal J.ORCID,Harvey Brian J.ORCID

Abstract

Abstract Background Climate change is eroding forest resilience to disturbance directly through warming climate and indirectly through increasing disturbance activity. Forests characterized by stand-replacing fire regimes and dominated by serotinous species are at risk when the inter-fire period is insufficient for canopy seed bank development and climate conditions for recruitment in the post-fire growing season are unsuitable. Although both factors are critical to serotinous forest persistence, their relative importance for post-fire regeneration in serotinous forests remains poorly understood. To assess the relative effects of each factor, we established plots in severely burned knobcone pine (Pinus attenuata Lemmon) forests in Oregon and California, USA, representing a range of past fire intervals (6 to 31+ years). Specifically, we evaluated effects of fire interval and pre-fire canopy seed bank (proxies for seed supply) and post-fire climate on three metrics of post-fire tree regeneration (seedling density, probability of self-replacement, percent population recovery). Results Seed supply consistently had the strongest effect on post-fire regeneration. Between 6- and 31-year fire intervals, post-fire seedling density increased from 1000 to 100,000 seedlings ha−1, while probability of self-replacement increased from ~ 0 to ~ 100% and percent population recovery increased from 20 to 2000% of the pre-fire population, respectively. Similarly, increasing the canopy seed bank by two orders of magnitude increased seedling density and percent population recovery by two orders and one order of magnitude, respectively, and increased the probability of self-replacement by > 50%. Greater post-fire climatic moisture deficit exacerbated the effect of seed supply; an additional 4–6 years between fires was required under high moisture stress conditions to reach similar regeneration levels as under low moisture stress conditions. Conclusion The overriding effect of seed supply—strongly driven by pre-fire stand age—on post-fire regeneration suggests that altered fire frequency (an indirect effect of climate change) will have a profound impact on serotinous forests. Although direct effects of hot and dry climate are lower in magnitude, they can alter forest recovery where seed supply nears a threshold. These findings reveal how fire interval and climate combine to determine changes in forest cover in the future, informing management and vulnerability mapping.

Funder

Australian Research Council

Joint Fire Science Program

Northwest Climate Adaptation Science Center

Achievement Rewards for College Scientists Foundation

Murdoch University

University of Washington

Publisher

Springer Science and Business Media LLC

Subject

Environmental Science (miscellaneous),Ecology, Evolution, Behavior and Systematics,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3