Assessment of forest fire severity and land surface temperature using Google Earth Engine: a case study of Gujarat State, India

Author:

Jodhani Keval H.ORCID,Patel HaardORCID,Soni UtsavORCID,Patel RishabhORCID,Valodara BhairaviORCID,Gupta NiteshORCID,Patel AnantORCID,Omar Padam jeeORCID

Abstract

AbstractForest fires are a recurring issue in many parts of the world, including India. These fires can have various causes, including human activities (such as agricultural burning, campfires, or discarded cigarettes) and natural factors (such as lightning). The present study presents a comprehensive and advanced methodology for assessing wildfire susceptibility by integrating diverse environmental variables and leveraging cutting-edge machine learning techniques across Gujarat State, India. The primary goal of the study is to utilize Google Earth Engine to compare locations in Gujarat, India, before and after forest fires. High-resolution satellite data were used to assess the amount and types of changes caused by forest fires. The present study meticulously analyzes various environmental variables, i.e., slope orientation, elevation, normalized difference vegetation index (NDVI), drainage density, precipitation, and temperature to understand landscape characteristics and assess wildfire susceptibility. In addition, a sophisticated random forest regression model is used to predict land surface temperature based on a set of environmental parameters. The maps that result depict the geographical distribution of normalized burn ratio and difference normalized burn ratio and land surface temperature forecasts, providing valuable insights into spatial patterns and trends. The findings of this work show that an automated temporal analysis utilizing Google Earth Engine may be used successfully over a wide range of land cover types, providing critical data for future monitoring of such threats. The impact of forest fires can be severe, leading to the loss of biodiversity, damage to ecosystems, and threats to human settlements.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3